Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Emanuel Peres Correia

2015

Cost-effective and Lightweight Mobile Units for MixAR: A Comparative Trial among Different Setups

Authors
Pádua, L; Narciso, D; Adão, T; Cunha, A; Peres, E; Magalhães, L;

Publication
Conference on ENTERprise Information Systems/International Conference on Project MANagement/Conference on Health and Social Care Information Systems and Technologies, CENTERIS/ProjMAN/HCist 2015, Vilamoura, Portugal, October 7-9, 2015.

Abstract

2022

VineInspector: The Vineyard Assistant

Authors
Mendes, J; Peres, E; dos Santos, FN; Silva, N; Silva, R; Sousa, JJ; Cortez, I; Morais, R;

Publication
AGRICULTURE-BASEL

Abstract
Proximity sensing approaches with a wide array of sensors available for use in precision viticulture contexts can nowadays be considered both well-know and mature technologies. Still, several in-field practices performed throughout different crops rely on direct visual observation supported on gained experience to assess aspects of plants' phenological development, as well as indicators relating to the onset of common plagues and diseases. Aiming to mimic in-field direct observation, this paper presents VineInspector: a low-cost, self-contained and easy-to-install system, which is able to measure microclimatic parameters, and also to acquire images using multiple cameras. It is built upon a stake structure, rendering it suitable for deployment across a vineyard. The approach through which distinguishable attributes are detected, classified and tallied in the periodically acquired images, makes use of artificial intelligence approaches. Furthermore, it is made available through an IoT cloud-based support system. VineInspector was field-tested under real operating conditions to assess not only the robustness and the operating functionality of the hardware solution, but also the AI approaches' accuracy. Two applications were developed to evaluate Vinelnspector's consistency while a viticulturist' assistant in everyday practices. One was intended to determine the size of the very first grapevines' shoots, one of the required parameters of the well known 3-10 rule to predict primary downy mildew infection. The other was developed to tally grapevine moth males captured in sex traps. Results show that VineInspector is a logical step in smart proximity monitoring by mimicking direct visual observation from experienced viticulturists. While the latter traditionally are responsible for a set of everyday practices in the field, these are time and resource consuming. VineInspector was proven to be effective in two of these practices, performing them automatically. Therefore, it enables both the continuous monitoring and assessment of a vineyard's phenological development in a more efficient manner, making way to more assertive and timely practices against pests and diseases.

2022

UAV-Based Hyperspectral Monitoring Using Push-Broom and Snapshot Sensors: A Multisite Assessment for Precision Viticulture Applications

Authors
Sousa, JJ; Toscano, P; Matese, A; Di Gennaro, SF; Berton, A; Gatti, M; Poni, S; Padua, L; Hruska, J; Morais, R; Peres, E;

Publication
SENSORS

Abstract
Hyperspectral aerial imagery is becoming increasingly available due to both technology evolution and a somewhat affordable price tag. However, selecting a proper UAV + hyperspectral sensor combo to use in specific contexts is still challenging and lacks proper documental support. While selecting an UAV is more straightforward as it mostly relates with sensor compatibility, autonomy, reliability and cost, a hyperspectral sensor has much more to be considered. This note provides an assessment of two hyperspectral sensors (push-broom and snapshot) regarding practicality and suitability, within a precision viticulture context. The aim is to provide researchers, agronomists, winegrowers and UAV pilots with dependable data collection protocols and methods, enabling them to achieve faster processing techniques and helping to integrate multiple data sources. Furthermore, both the benefits and drawbacks of using each technology within a precision viticulture context are also highlighted. Hyperspectral sensors, UAVs, flight operations, and the processing methodology for each imaging type' datasets are presented through a qualitative and quantitative analysis. For this purpose, four vineyards in two countries were selected as case studies. This supports the extrapolation of both advantages and issues related with the two types of hyperspectral sensors used, in different contexts. Sensors' performance was compared through the evaluation of field operations complexity, processing time and qualitative accuracy of the results, namely the quality of the generated hyperspectral mosaics. The results shown an overall excellent geometrical quality, with no distortions or overlapping faults for both technologies, using the proposed mosaicking process and reconstruction. By resorting to the multi-site assessment, the qualitative and quantitative exchange of information throughout the UAV hyperspectral community is facilitated. In addition, all the major benefits and drawbacks of each hyperspectral sensor regarding its operation and data features are identified. Lastly, the operational complexity in the context of precision agriculture is also presented.

2022

SEGMENTATION AS A PREPROCESSING TOOL FOR AUTOMATIC GRAPEVINE CLASSIFICATION

Authors
Carneiro, GA; Padua, L; Peres, E; Morais, R; Sousa, JJ; Cunha, A;

Publication
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022)

Abstract
The grapevine variety plays an important role in wine chain production, thus identifying it is crucial for control activities. However, the specialists responsible for identifying the different varieties, mainly through visual analysis, are disappearing. In this scenario, Deep Learning (DL) classification techniques become a possible solution to handle professionals' scarcity. Nevertheless, previous experiments show that trained classification models use the background information to make decisions, which should be avoided. In this paper, we present a study allowing the assessment of removing background regions from the grapevine images in the improvement classification using DL models. The Xception model is trained with a normal dataset and its segmented version. The Local Interpretable Model-Agnostic Explanations (LIME), Grad-CAM, and Grad-CAM++ approaches are used to visualize the segmentation impact in classification decisions. F1-score of 0.92 and 0.94 were achieved, respectively, for segmented-dataset and normal-dataset trained models. Despite the model trained with the segmented-dataset to achieve a worse performance, the Explainable Artificial Intelligence (XAI) approaches showed that it looks into more reliable regions when making decisions.

2022

GRAPEVINE VARIETIES IDENTIFICATION USING VISION TRANSFORMERS

Authors
Carneiro, GA; Padua, L; Peres, E; Morais, R; Sousa, JJ; Cunha, A;

Publication
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022)

Abstract
The grape variety plays an important role in the wine production chain, thus identifying it is crucial for production control. Ampelographers, professionals who identify grape varieties through plant visual analysis, are scarce, and molecular markers are expansive to identify grape varieties on a large scale. In this context, Deep Learning models become an effective way to handle ampelographers scarcity. In this work, we explore the benefit of using deep learning vision transformers architecture relative to conventional CNN to identify 12 grapevine varieties using leaf-centred RGB images acquired in the field. We train an Xception model as a baseline and four different configurations of the ViT_B model. The best model achieved 0.96 of F1-score, outperforming the state-of-the-art convolutional-based model in the used dataset.

2022

Mapping the Leaf Area Index of Castanea sativa Miller Using UAV-Based Multispectral and Geometrical Data

Authors
Padua, L; Chiroque-Solano, PM; Marques, P; Sousa, JJ; Peres, E;

Publication
DRONES

Abstract
Remote-sensing processes based on unmanned aerial vehicles (UAV) have opened up new possibilities to both map and extract individual plant parameters. This is mainly due to the high spatial data resolution and acquisition flexibility of UAVs. Among the possible plant-related metrics is the leaf area index (LAI), which has already been successfully estimated in agronomy and forestry studies using the traditional normalized difference vegetation index from multispectral data or using hyperspectral data. However, the LAI has not been estimated in chestnut trees, and few studies have explored the use of multiple vegetation indices to improve LAI estimation from aerial imagery acquired by UAVs. This study uses multispectral UAV-based data from a chestnut grove to estimate the LAI for each tree by combining vegetation indices computed from different segments of the electromagnetic spectrum with geometrical parameters. Machine-learning techniques were evaluated to predict LAI with robust algorithms that consider dimensionality reduction, avoiding over-fitting, and reduce bias and excess variability. The best achieved coefficient of determination (R-2) value of 85%, which shows that the biophysical and geometrical parameters can explain the LAI variability. This result proves that LAI estimation is improved when using multiple variables instead of a single vegetation index. Furthermore, another significant contribution is a simple, reliable, and precise model that relies on only two variables to estimate the LAI in individual chestnut trees.

  • 15
  • 21