Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Ana Nunes Alonso

2020

Building a Polyglot Data Access Layer for a Low-Code Application Development Platform - (Experience Report)

Authors
Alonso, AN; Abreu, J; Nunes, D; Vieira, A; Santos, L; Soares, T; Pereira, J;

Publication
Distributed Applications and Interoperable Systems - 20th IFIP WG 6.1 International Conference, DAIS 2020, Held as Part of the 15th International Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings

Abstract
Low-code application development as proposed by the OutSystems Platform enables fast mobile and desktop application development and deployment. It hinges on visual development of the interface and business logic but also on easy integration with data stores and services while delivering robust applications that scale. Data integration increasingly means accessing a variety of NoSQL stores. Unfortunately, the diversity of data and processing models, that make them useful in the first place, is difficult to reconcile with the simplification of abstractions exposed to developers in a low-code platform. Moreover, NoSQL data stores also rely on a variety of general purpose and custom scripting languages as their main interfaces. In this paper we report on building a polyglot data access layer for the OutSystems Platform that uses SQL with optional embedded script snippets to bridge the gap between low-code and full access to NoSQL stores. © IFIP International Federation for Information Processing 2020.

2021

Towards Generic Fine-Grained Transaction Isolation in Polystores

Authors
Faria, N; Pereira, J; Alonso, AN; Vilaça, R;

Publication
Heterogeneous Data Management, Polystores, and Analytics for Healthcare - VLDB Workshops, Poly 2021 and DMAH 2021, Virtual Event, August 20, 2021, Revised Selected Papers

Abstract
Transactional isolation is a challenge for polystores, as along with the limited capabilities of each datastore, we have to contend with their sheer diversity. However, transactional isolation is increasingly desirable as a variety of datastores are being sought after for roles that go beyond data lakes. Transactional guarantees are also relevant for reliability at scale. In this paper, we propose that transactional isolation in polystores can be achieved by leveraging the query engine, i.e., basing some of the responsibilities of a traditional transactional storage manager (TSM) on the query language itself. This has the key advantage of greatly simplifying design and implementation, as it doesn’t need to be re-invented for each datastore, and should increase performance, by taking advantage of dynamic query optimization where available. We demonstrate the feasibility of the proposal with a simple proof-of-concept and experiment. © 2021, Springer Nature Switzerland AG.

2022

A Blockchain-based Data Market for Renewable Energy Forecasts

Authors
Coelho, F; Silva, F; Goncalves, C; Bessa, R; Alonso, A;

Publication
2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA)

Abstract
This paper presents a data market aimed at trading energy forecasts data. The system architecture is built using blockchain as a service, allowing access to data streams and establishing a distributed settlement between stakeholders. Energy Forecasts data is presented as the commodity traded in the market, whose settlement is provided through the blockchain on the basis of the extracted value provided by market stakeholders. Our proposal allows market stakeholders to acquire energy forecasts and pay according to the data accuracy, solving the confidentiality problem of freely sharing data. A data quality reward is introduced, steering the compensation sent to market participants. The data market design is presented and an evaluation campaign is performed, showing that the data market produced functionally valid results in comparison with the results achieved with a central simulated approach. Moreover, results show that the data market architecture is able to scale.

2022

Flexible Fine-grained Data Access Management for Hyperledger Fabric

Authors
Parente, J; Alonso, AN; Coelho, F; Vinagre, J; Bastos, P;

Publication
2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA)

Abstract
As blockchains go beyond cryptocurrencies into applications in multiple industries such as Insurance, Healthcare and Banking, handling personal or sensitive data, data access control becomes increasingly relevant. Access control mechanisms proposed so far are mostly based on requester identity, particularly for permissioned blockchain platforms, and are limited to binary, all-or-nothing access decisions. This is the case with Hyperledger Fabric's native access control mechanisms and, as permission updates require consensus, these fall short regarding the flexibility required to address GDPR-derived policies and client consent management. We propose SDAM, a novel access control mechanism for Fabric that enables fine-grained and dynamic control policies, using both contextual and resource attributes for decisions. Instead of binary results, decisions may also include mandatory data transformations as to conform with the expressed policy, all without modifications to Fabric. Results show that SDAM's overhead w.r.t baseline Fabric is acceptable. The scalability of the approach w.r.t to the number of concurrent clients is also evaluated and found to follow Fabric's.

2023

Privacy-Preserving Machine Learning in Life Insurance Risk Prediction

Authors
Pereira, K; Vinagre, J; Alonso, AN; Coelho, F; Carvalho, M;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
The application of machine learning to insurance risk prediction requires learning from sensitive data. This raises multiple ethical and legal issues. One of the most relevant ones is privacy. However, privacy-preserving methods can potentially hinder the predictive potential of machine learning models. In this paper, we present preliminary experiments with life insurance data using two privacy-preserving techniques: discretization and encryption. Our objective with this work is to assess the impact of such privacy preservation techniques in the accuracy of ML models. We instantiate the problem in three general, but plausible Use Cases involving the prediction of insurance claims within a 1-year horizon. Our preliminary experiments suggest that discretization and encryption have negligible impact in the accuracy of ML models.

2022

Privacy-Preserving Machine Learning in Life Insurance Risk Prediction

Authors
Pereira, K; Vinagre, J; Alonso, AN; Coelho, F; Carvalho, M;

Publication
Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part II

Abstract
The application of machine learning to insurance risk prediction requires learning from sensitive data. This raises multiple ethical and legal issues. One of the most relevant ones is privacy. However, privacy-preserving methods can potentially hinder the predictive potential of machine learning models. In this paper, we present preliminary experiments with life insurance data using two privacy-preserving techniques: discretization and encryption. Our objective with this work is to assess the impact of such privacy preservation techniques in the accuracy of ML models. We instantiate the problem in three general, but plausible Use Cases involving the prediction of insurance claims within a 1-year horizon. Our preliminary experiments suggest that discretization and encryption have negligible impact in the accuracy of ML models. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • 2
  • 3