2019
Authors
Rocha, A; Ornelas, JP; Lopes, JC; Camacho, R;
Publication
ERCIM NEWS
Abstract
Novel data collection tools, methods and new techniques in biotechnology can facilitate improved health strategies that are customised to each individual. One key challenge to achieve this is to take advantage of the massive volumes of personal anonymous data, relating each profile to health and disease, while accounting for high diversity in individuals, populations and environments. These data must be analysed in unison to achieve statistical power, but presently cohort data repositories are scattered, hard to search and integrate, and data protection and governance rules discourage central pooling.
2020
Authors
Becker, D; Bremer, V; Funk, B; Hoogendoorn, M; Rocha, A; Riper, H;
Publication
EVIDENCE-BASED MENTAL HEALTH
Abstract
Background Self-reported client assessments during online treatments enable the development of statistical models for the prediction of client improvement and symptom development. Evaluation of these models is mandatory to ensure their validity. Methods For this purpose, we suggest besides a model evaluation based on study data the use of a simulation analysis. The simulation analysis provides insight into the model performance and enables to analyse reasons for a low predictive accuracy. In this study, we evaluate a temporal causal model (TCM) and show that it does not provide reliable predictions of clients' future mood levels. Results Based on the simulation analysis we investigate the potential reasons for the low predictive performance, for example, noisy measurements and sampling frequency. We conclude that the analysed TCM in its current form is not sufficient to describe the underlying psychological processes. Conclusions The results demonstrate the importance of model evaluation and the benefit of a simulation analysis. The current manuscript provides practical guidance for conducting model evaluation including simulation analysis.
2020
Authors
Christley, S; Aguiar, A; Blanck, G; Breden, F; Chan Bukhari, SA; Busse, CE; Jaglale, J; Harikrishnan, SL; Laserson, U; Peters, B; Rocha, A; Schramm, CA; Taylor, S; Vander Heiden, JA; Zimonja, B; Watson, CT; Corrie, B; Cowell, LG;
Publication
Frontiers Big Data
Abstract
2020
Authors
Provoost, S; Kleiboer, A; Ornelas, J; Bosse, T; Ruwaard, J; Rocha, A; Cuijpers, P; Riper, H;
Publication
TRIALS
Abstract
Background: Internet-based cognitive-behavioral therapy (iCBT) is more effective when it is guided by human support than when it is unguided. This may be attributable to higher adherence rates that result from a positive effect of the accompanying support on motivation and on engagement with the intervention. This protocol presents the design of a pilot randomized controlled trial that aims to start bridging the gap between guided and unguided interventions. It will test an intervention that includes automated support delivered by an embodied conversational agent (ECA) in the form of a virtual coach. Methods/design: The study will employ a pilot two-armed randomized controlled trial design. The primary outcomes of the trial will be (1) the effectiveness of iCBT, as supported by a virtual coach, in terms of improved intervention adherence in comparison with unguided iCBT, and (2) the feasibility of a future, larger-scale trial in terms of recruitment, acceptability, and sample size calculation. Secondary aims will be to assess the virtual coach's effect on motivation, users' perceptions of the virtual coach, and general feasibility of the intervention as supported by a virtual coach. We will recruitN = 70 participants from the general population who wish to learn how they can improve their mood by using Moodbuster Lite, a 4-week cognitive-behavioral therapy course. Candidates with symptoms of moderate to severe depression will be excluded from study participation. Included participants will be randomized in a 1:1 ratio to either (1) Moodbuster Lite with automated support delivered by a virtual coach or (2) Moodbuster Lite without automated support. Assessments will be taken at baseline and post-study 4 weeks later. Discussion: The study will assess the preliminary effectiveness of a virtual coach in improving adherence and will determine the feasibility of a larger-scale RCT. It could represent a significant step in bridging the gap between guided and unguided iCBT interventions.
2021
Authors
Rocha, A; Costa, A; Oliveira, MA; Aguiar, A;
Publication
ERCIM NEWS
Abstract
iReceptor Plus will enable researchers around the world to share and analyse huge immunological distributed datasets, from multiple countries, containing sequencing data pertaining to both healthy and sick individuals. Most of the Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) data is currently stored and curated by individual labs, using a variety of tools and technologies.
2021
Authors
Pavlovic, M; Scheffer, L; Motwani, K; Kanduri, C; Kompova, R; Vazov, N; Waagan, K; Bernal, FLM; Costa, AA; Corrie, B; Akbar, R; Al Hajj, GS; Balaban, G; Brusko, TM; Chernigovskaya, M; Christley, S; Cowell, LG; Frank, R; Grytten, I; Gundersen, S; Haff, IH; Hovig, E; Hsieh, PH; Klambauer, G; Kuijjer, ML; Lund Andersen, C; Martini, A; Minotto, T; Pensar, J; Rand, K; Riccardi, E; Robert, PA; Rocha, A; Slabodkin, A; Snapkov, I; Sollid, LM; Titov, D; Weber, CR; Widrich, M; Yaari, G; Greiff, V; Sandve, GK;
Publication
NATURE MACHINE INTELLIGENCE
Abstract
Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (1) reproducing a large-scale study on immune state prediction, (2) developing, integrating and applying a novel deep learning method for antigen specificity prediction and (3) showcasing streamlined interpretability-focused benchmarking of AIRR ML.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.