2012
Authors
Martins, J; Pinto, A; Stollenwerk, N;
Publication
MATHEMATICAL BIOSCIENCES
Abstract
Previous epidemiological studies on SIS model have only considered the dynamic evolution of the mean value and the variance of the infected individuals. In this paper, through cumulant neglection, we use the dynamic equations of all the moments of infected individuals to develop a recursive method to compute the equilibria manifold of the moment closure ODE's. Specifically, we use the stable equilibria of the moment closure ODE's to obtain good approximations of the quasi-stationary states of the SIS model. This is a crucial step when the quasi-stationary distribution is highly skewed.
2010
Authors
Pinto, A; Aguiar, M; Martins, J; Stollenwerk, N;
Publication
ACTA BIOTHEORETICA
Abstract
We study the SIS and SIRI epidemic models discussing different approaches to compute the thresholds that determine the appearance of an epidemic disease. The stochastic SIS model is a well known mathematical model, studied in several contexts. Here, we present recursively derivations of the dynamic equations for all the moments and we derive the stationary states of the state variables using the moment closure method. We observe that the steady states give a good approximation of the quasi-stationary states of the SIS model. We present the relation between the SIS stochastic model and the contact process introducing creation and annihilation operators. For the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I, then recover and remain only partial immune against reinfection R, we present the phase transition lines using the mean field and the pair approximation for the moments. We use a scaling argument that allow us to determine analytically an explicit formula for the phase transition lines in pair approximation.
2011
Authors
Banik, N; Ferreira, FA; Martins, J; Pinto, AA;
Publication
DYNAMICS, GAMES AND SCIENCE II
Abstract
We consider an international trade economical model where two firms of different countries compete in quantities and can use three different strategies: (i) repealed collusion, (ii) deviation from the foreigner firm followed by punishment by he home country and then followed by repeated Cournot, or (iii) repeated deviation followed by punishment. In some cases (ii) and (iii) can be interpreted as dumping, We compute the profits of both firms for each strategy and we characterize the econc,mical parameters where each strategy is adopted by the firms.
2024
Authors
Accinelli, E; Afsar, A; Martins, F; Martins, J; Oliveira, BMPM; Oviedo, J; Pinto, AA; Quintas, L;
Publication
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Abstract
This paper fits in the theory of international agreements by studying the success of stable coalitions of agents seeking the preservation of a public good. Extending Baliga and Maskin, we consider a model of N homogeneous agents with quasi-linear utilities of the form u(j) (r(j); r) = r(alpha) - r(j), where r is the aggregate contribution and the exponent alpha is the elasticity of the gross utility. When the value of the elasticity alpha increases in its natural range (0, 1), we prove the following five main results in the formation of stable coalitions: (i) the gap of cooperation, characterized as the ratio of the welfare of the grand coalition to the welfare of the competitive singleton coalition grows to infinity, which we interpret as a measure of the urge or need to save the public good; (ii) the size of stable coalitions increases from 1 up to N; (iii) the ratio of the welfare of stable coalitions to the welfare of the competitive singleton coalition grows to infinity; (iv) the ratio of the welfare of stable coalitions to the welfare of the grand coalition decreases (a lot), up to when the number of members of the stable coalition is approximately N/e and after that it increases (a lot); and (v) the growth of stable coalitions occurs with a much greater loss of the coalition members when compared with free-riders. Result (v) has two major drawbacks: (a) A priori, it is difficult to convince agents to be members of the stable coalition and (b) together with results (i) and (iv), it explains and leads to the pessimistic Barrett's paradox of cooperation, even in a case not much considered in the literature: The ratio of the welfare of the stable coalitions against the welfare of the grand coalition is small, even in the extreme case where there are few (or a single) free-riders and the gap of cooperation is large. Optimistically, result (iii) shows that stable coalitions do much better than the competitive singleton coalition. Furthermore, result (ii) proves that the paradox of cooperation is resolved for larger values of.. so that the grand coalition is stabilized.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.