2021
Authors
Beck, D; Morgado, L; Lee, M; Gutl, C; Dengel, A; Wang, MJ; Warren, S; Richter, J;
Publication
2021 7TH INTERNATIONAL CONFERENCE OF THE IMMERSIVE LEARNING RESEARCH NETWORK (ILRN)
Abstract
The interdisciplinary field of immersive learning research is scattered. Combining efforts for better exploration of this field from the different disciplines requires researchers to communicate and coordinate effectively. We call upon the community of immersive learning researchers for planting the Knowledge Tree of Immersive Learning Research, a proposal for a systematization effort for this field, combining both scholarly and practical knowledge, cultivating a robust and ever-growing knowledge base and methodological toolbox for immersive learning. This endeavor aims at promoting evidence-informed practice and guiding future research in the field. This paper contributes with the rationale for three objectives: 1) Developing common scientific terminology amidst the community of researchers; 2) Cultivating a common understanding of methodology, and 3) Advancing common use of theoretical approaches, frameworks, and models.
2021
Authors
Lattke, S; Morgado, L; Afonso, AP; Penicheiro, F; Morgado, L; Moreira, JA;
Publication
2021 7TH INTERNATIONAL CONFERENCE OF THE IMMERSIVE LEARNING RESEARCH NETWORK (ILRN)
Abstract
The paper presents the e-facilitator concept and explores the perspective of some professionals in the field (stakeholders) on this role and its competencies. Facilitation in virtual learning environments is a growing challenge when more and more learners find their way to online learning platforms and many universities adapt their courses to digital environments since the global pandemic forced many people to stay at home.
2021
Authors
Cassola, F; Pinto, M; Mendes, D; Morgado, L; Coelho, A; Paredes, H;
Publication
2021 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS (VRW 2021)
Abstract
The use of VR in industrial training contributes to reduce costs and risks, supporting more frequent and diversified use of experiential learning activities, an approach with proven results. In this work, we present an innovative immersive authoring tool for experiential learning in VR-based training. It enables a trainer to structure an entire VR training course in an immersive environment, defining its sub-components, models, tools, and settings, as well as specifying by demonstration the actions to be performed by trainees. The trainees performing the immersive training course have their actions recorded and matched to the ones specified by the trainer.
2021
Authors
Pedrosa, D; Fontes, MM; Araujo, T; Morais, C; Bettencourt, T; Pestana, PD; Morgado, L; Cravino, J;
Publication
2021 4TH INTERNATIONAL CONFERENCE OF THE PORTUGUESE SOCIETY FOR ENGINEERING EDUCATION (CISPEE)
Abstract
Software engineering education requires students to develop technical knowledge and advanced cognitive and behavioral skills, particularly in the transition from novice to proficient. In distance learning, the hurdles are greater because students require greater autonomy, adopting strategies of self and co-regulation of learning. Facing these challenges, the SimProgramming approach has been transposed into the context of DL: e-SimProgramming. In the second iteration of e-SimProgramming implementation (2019/2020), one adaptation was inclusion of metacognitive challenges (MC) to promote students' self-reflection on their learning process. We explain the design of the two types of implemented MCs. We provide qualitative and quantitative analysis of: 1) evolution of MCs submission throughout the semester, identifying regularity and completion within deadlines and their relationship to student success; 2) students' perceptions of MCs. Results show a positive correlation between high MC submission and student success, greater interest and involvement of students in type 2 MCs and positive perceptions of students about MCs.
2020
Authors
Cruz, A; Paredes, H; Morgado, L; Martins, P;
Publication
JOURNAL OF UNIVERSAL COMPUTER SCIENCE
Abstract
Virtual worlds, particularly those able to provide a three-dimensional physical space, have features that make them suitable to support collaborative activities. These features distinguish virtual worlds from other collaboration tools, but current taxonomies of the field of Computer-Supported Cooperative Work do not account for several distinctive features of virtual worlds, namely those related with non-verbal communication. We intended to find out how the use of an avatar, gestures, spatial sounds, etc., influence collaboration in order to be able to include non-verbal communication in taxonomies of the field Computer-Supported Cooperative Work. Several cases of collaboration in virtual worlds are analysed, to find the impact of these non-verbal characteristics of virtual worlds. We proposed adding the concept of Presence to taxonomies of Computer-Supported Cooperative Work and contribute with guidance for future taxonomy development that includes it as a new dimension. This new dimension of Presence is subdivided into "avatar" and "physical space" subdimensions. In turn, these are divided into "physical appearance", "gestures, sounds and animations" and "focus, nimbus and aura"; "environment" and "objects / artefacts". This new taxonomy-development proposal may contribute to inform better design of virtual worlds in support of cooperative work.
2022
Authors
Cassola, F; Mendes, D; Pinto, M; Morgado, L; Costa, S; Anjos, L; Marques, D; Rosa, F; Maia, A; Tavares, H; Coelho, A; Paredes, H;
Publication
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES
Abstract
The use of virtual reality (VR) for industrial training helps minimize risks and costs by allowing more frequent and varied use of experiential learning activities, leading to active and improved learning. However, creating VR training experiences is costly and time-consuming, requiring software development experts. Additionally, current authoring tools lack integration with existing data and are desktop-oriented, which detach the pedagogic process of creating the immersive experience from experiencing it in a situated context. In this article, we present a novel interactive approach for immersive authoring of VR-based experiential training by the trainers themselves, from inside the virtual environment and without the support of development experts. The design includes identifying interactable elements, such as 3-D models, equipment, tools, settings, and environment. The trainer also specifies by demonstration the actions to be performed by trainees, as a virtual choreography. During course execution, trainees' activities are also registered as virtual choreographies and matched to those specified by the trainer. Thus, trainer and trainee are culturally situated within their area semantics and social discourse, rather than adopting concepts of the VR system for the learning content. We conducted a usability case study with professionals from an international wind energy company, using detailed models of wind turbines and real-world procedures. Trainers set up a training course using the immersive authoring tool, and trainees executed the course. The learning experience and usability were analyzed, and the training was certified by comparing real-world task completion between a user who had undergone virtual training and a user who did not.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.