Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Paulo Moura Oliveira

2023

Ant-Balanced Multiple Traveling Salesmen: ACO-BmTSP

Authors
Pereira, SD; Pires, EJS; Oliveira, PBD;

Publication
ALGORITHMS

Abstract
A new algorithm based on the ant colony optimization (ACO) method for the multiple traveling salesman problem (mTSP) is presented and defined as ACO-BmTSP. This paper addresses the problem of solving the mTSP while considering several salesmen and keeping both the total travel cost at the minimum and the tours balanced. Eleven different problems with several variants were analyzed to validate the method. The 20 variants considered three to twenty salesmen regarding 11 to 783 cities. The results were compared with best-known solutions (BKSs) in the literature. Computational experiments showed that a total of eight final results were better than those of the BKSs, and the others were quite promising, showing that with few adaptations, it will be possible to obtain better results than those of the BKSs. Although the ACO metaheuristic does not guarantee that the best solution will be found, it is essential in problems with non-deterministic polynomial time complexity resolution or when used as an initial bound solution in an integer programming formulation. Computational experiments on a wide range of benchmark problems within an acceptable time limit showed that compared with four existing algorithms, the proposed algorithm presented better results for several problems than the other algorithms did.

2023

Pocket Labs as a STEM Learning Tool and for Engineering Motivation

Authors
Cardoso, A; Oliveira, PM; Sa, J;

Publication
LEARNING IN THE AGE OF DIGITAL AND GREEN TRANSITION, ICL2022, VOL 1

Abstract
Teaching and learning are processes that must accompany the digital transition, which is one of the biggest challenges we currently face, along with the green transition. The digital transition in education is a process with several challenges that must count on the involvement and collaboration of all stakeholders, contributing to the schools of the future. For this, technology plays a decisive role, and must be integrated into classes as a relevant tool to develop and implement different types of experiments, motivating the students towards STEM areas. In this context, a project financed by IFAC made it possible to use pocket laboratories in different high schools, encouraging teachers to prepare activities supported by this equipment, stimulating students to be interested in engineering topics. This article presents the approach followed in one high school and discusses the results obtained, highlighting the usefulness and opportunity of using pocket labs, and low-cost equipment in general, in school activities, which can promote the STEM areas and, in particular, the engineering courses.

2023

Deep Learning YOLO-Based Solution for Grape Bunch Detection and Assessment of Biophysical Lesions

Authors
Pinheiro, I; Moreira, G; da Silva, DQ; Magalhaes, S; Valente, A; Oliveira, PM; Cunha, M; Santos, F;

Publication
AGRONOMY-BASEL

Abstract
The world wine sector is a multi-billion dollar industry with a wide range of economic activities. Therefore, it becomes crucial to monitor the grapevine because it allows a more accurate estimation of the yield and ensures a high-quality end product. The most common way of monitoring the grapevine is through the leaves (preventive way) since the leaves first manifest biophysical lesions. However, this does not exclude the possibility of biophysical lesions manifesting in the grape berries. Thus, this work presents three pre-trained YOLO models (YOLOv5x6, YOLOv7-E6E, and YOLOR-CSP-X) to detect and classify grape bunches as healthy or damaged by the number of berries with biophysical lesions. Two datasets were created and made publicly available with original images and manual annotations to identify the complexity between detection (bunches) and classification (healthy or damaged) tasks. The datasets use the same 10,010 images with different classes. The Grapevine Bunch Detection Dataset uses the Bunch class, and The Grapevine Bunch Condition Detection Dataset uses the OptimalBunch and DamagedBunch classes. Regarding the three models trained for grape bunches detection, they obtained promising results, highlighting YOLOv7 with 77% of mAP and 94% of the F1-score. In the case of the task of detection and identification of the state of grape bunches, the three models obtained similar results, with YOLOv5 achieving the best ones with an mAP of 72% and an F1-score of 92%.

2023

Investigating the Effectiveness of Process Control Didactics Kits in Engineering Education

Authors
Silva, V; Oliveira, PM; Leao, P; Soares, F; Lopes, H; Machado, J;

Publication
2023 5th International Conference of the Portuguese Society for Engineering Education, CISPEE 2023

Abstract
This paper deliberates some of the motivations for contemplating Kits in the theoretical-practical class of a Curricular Unit of Process Control to first year students of a Master Degree in Mechanical Engineering, alongside their purpose. Also, the perceptions of these students about the use of these kits in their learning process are discussed based on an online questionnaire developed for that purpose. According to students' feedback, gathered by an anonymous online questionnaire, it was possible to investigate the effectiveness of the use of didactics kits in the learning of Process Control topics. The obtained results from the students perception are clearly positive and motivating to further uses of this type kit as portable laboratories. © 2023 IEEE.

2022

Prediction of Ventricular Tachyarrhythmia Using Deep Learning

Authors
Barbosa, D; Solteiro Pires, EJ; Leite, A; Moura Oliveira, PBd;

Publication
Wireless Mobile Communication and Healthcare - 11th EAI International Conference, MobiHealth 2022, Virtual Event, November 30 - December 2, 2022, Proceedings

Abstract

2010

Multi-criteria Manipulator Trajectory Optimization Based on Evolutionary Algorithms

Authors
Pires, EJS; Oliveira, PBD; Machado, JAT;

Publication
SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS

Abstract
This paper proposes a method, based on a genetic algorithm, to generate smoth manipulator trajectories in a multi-objective perspective. The method uses terms proportional to the integral of the squared displacements in order to eliminate the jerk movement. In this work, the algorithm, based on NSGA-II and maximin sorting schemes, considers manipulators of two, three and four rotational axis (2R, 3R, 4R). The efficiency of the algorithm is evaluated, namely the extension of the front and the dispersion along the front. The effectiveness and capacity of the proposed approach are shown through simulations tests.

  • 19
  • 31