Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Paulo Moura Oliveira

2024

Evaluation of GPTs for Control Engineering Education: Towards Artificial General Intelligence

Authors
Oliveira, PBD; Vrancic, D;

Publication
IFAC PAPERSONLINE

Abstract
Recently introduced Generalized Pre-trained Transformers (GPT) and conversional chatbots such as ChatGPT are causing deep society transformations. The incorporation of these Artificial Intelligence technologies can be beneficial in multiple science and development areas including Control Engineering. The evaluation of GPTs within Control Engineering Education and PID control is addressed in this work. Different types of interactions with GPTs are evaluated and the use of a personalized GPT for PID tuning explored. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

2024

Forest Fire Risk Prediction Using Machine Learning

Authors
Vilaças Nogueira, JD; Solteiro Pires, EJ; Reis, A; Moura Oliveira, PBd; Pereira, A; Barroso, J;

Publication
The 19th International Conference on Soft Computing Models in Industrial and Environmental Applications SOCO 2024 - Salamanca, Spain, October 9-11, 2024 Proceedings, Volume 2

Abstract
With the serious danger to nature and humanity that forest fires are, taken into consideration, this work aims to develop an artificial intelligence model capable of accurately predicting the forest fire risk in a certain region based on four different factors: temperature, wind speed, rain and humidity. Thus, three models were created using three different approaches: Artificial Neural Networks (ANN), Random Forest (RF), and K-Nearest Neighbor (KNN), and making use of an Algerian forest fire dataset. The ANN and RF both achieved high accuracy results of 97%, while the KNN achieved a slightly lower average of 91%. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

An International Overview of Teaching Control Systems During COVID-19 Pandemic

Authors
Guzmán J.L.; Zakova K.; Craig I.; Hägglund T.; Rivera D.E.; Normey-Rico J.; Moura-Oliveira P.; Wang L.; Serbezov A.; Sato T.; Visioli A.;

Publication
International Journal of Engineering Education

Abstract
This paper aims to provide an overview of the impact of the COVID-19 pandemic on control engineering education worldwide. The authors, who are educators in the control education field from various countries across all continents, first summarize their experiences to present a global perspective on the different solutions adopted in control education during the pandemic. Afterwards, collected information from the international community through a questionnaire enabled insightful comparisons between pre-pandemic and during-pandemic educational resources and methods, which are shared in this paper. The feedback from the authors’ experiences, along with the questionnaire responses, serves as a valuable resource for learning and improving teaching activities. The questionnaire was distributed among the international control engineering community in collaboration with the International Federation of Automatic Control (IFAC) to explore the diverse alternatives employed globally for conducting online educational activities during the pandemic. These activities include methodologies, tools, theoretical exercises, laboratory experiments, exam types, simulators, and software for online lecturing.

2025

A review of advanced controller methodologies for robotic manipulators

Authors
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Magalhaes, SA; Oliveira, PM;

Publication
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL

Abstract
With the global population on the rise and a declining agricultural labor force, the realm of robotics research in agriculture, such as robotic manipulators, has assumed heightened significance. This article undertakes a comprehensive exploration of the latest advancements in controllers tailored for robotic manipulators. The investigation encompasses an examination of six distinct controller paradigms, complemented by the presentation of three exemplars for each category. These paradigms encompass: (i) adaptive control, (ii) sliding mode control, (iii) model predictive control, (iv) robust control, (v) fuzzy logic control and (vi) neural network control. The article further introduces and presents comparative tables for each controller category. These controllers excel in tracking trajectories and efficiently reaching reference points with rapid convergence. The key point of divergence among these controllers resides in their inherent complexity.

2019

Progress in Artificial Intelligence

Authors
Paulo Moura Oliveira; Paulo Novais; Luís Paulo Reis;

Publication

Abstract

2024

Playing Tic-Tac-Toe with Dobot Magician: An Experiment to Engage Students for Engineering Studies

Authors
Oliveira, D; Filipe, V; Oliveira, PM;

Publication
Lecture Notes in Educational Technology

Abstract
Encouraging pre-university students to pursue engineering courses at the university level is essential to meet the industry’s escalating demand for engineers. Each year, universities host hundreds of secondary students who tour their facilities to get a feel for the academic environment. This paper discusses an educational experiment designed as part of a semester-long undergraduate project in Informatics Engineering. The project involves tailoring a Dobot Magician robot, equipped with a standard webcam, to engage in a game of tic-tac-toe against a human user. The camera stream is continuously processed by a computer vision algorithm to detect the pieces placement in the game board. The paper outlines the project development stages, the elements involved, and presents preliminary test results. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

  • 31
  • 32