2021
Authors
Coelho, JP; Giernacki, W; Gonçalves, J; Boaventura Cunha, J;
Publication
Lecture Notes in Electrical Engineering
Abstract
Distributed power sources will become increasingly ubiquitous in the near future. In this power production paradigm, photovoltaic conversion systems will play a fundamental role due to the growing tendency of energy price, and an opposed trend for the photovoltaic panels. This will lead to increased pressure for the installation of this particular renewable energy source in home buildings. In particular, on-grid photovoltaic systems where the generated power can be injected directly to the main power grid. This strategy requires the use of DC-AC inverters whose output is synchronized, in phase, with the main grid voltage. In order to provide steady output in the presence of load disturbances, the inverter must work in closed-loop. This work presents a new way to design an inverter controller by resorting to the CDM design technique. The obtained results suggest that the controller achieved with this method, although simpler than other methods, leads to an acceptable and robust closed-loop response. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.
2021
Authors
Ferreira, NMF; Boaventura Cunha, J;
Publication
CONTROLO 2020
Abstract
The robotics field is widely used in the industrial domain, but nowadays several other domains could also take advantage of it. This interdisciplinary branch of engineering requires the use of human interfaces, efficient communication systems, high storage and processing capabilities, among other issues, to perform complex tasks. This paper aims to propose a cloud-based framework platform for robot operation in a hospital environment, addressing some challenges, such as communications security and processing/storage features. The recent developments in the artificial intelligence field and cloud resources sharing are allowing the penetration of robots in unstructured environments. However, some new challenges and solutions need to be tested in real environments. Our main contribution is to decrease the time-consumption related to processing and storage costs, associated with the physical processing resources of the robots. Also, the proposed methods provide an increase of the processing variables that are not yet present in the physical resources, such as in the case of robots with limited processing time or storage capabilities. This paper presents a platform based on Cloud Computing with services to support processing, storage and analytics applied to hospital environments. The proposed platform enables to achieve a decrease in the time-consumption, especially when it is intended to retrieve information about all robot activities. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.
2021
Authors
Saraiva, AA; Santos, DBS; Ferreira, NMF; Boaventura-Cunha, J;
Publication
CONTROLO 2020
Abstract
In this paper the comparison between three convolutional neural networks, used for the control of bio-inspired multi-robots in a simulated environment, is performed through manual gestures captured in real time by a webcam. The neural networks are: VGG19, GoogLeNet and Alexnet. For the training of networks and control of robots, six gestures were used, each gesture corresponding to one action, collective and individual actions were defined, the simulation contains four bio-inspired robots. In this work the performance of the networks in the classification of gestures to control robots is compared. They proved to be efficient in the classification and control of agents, with Alexnet achieving an accuracy of 98.33%, VGG19 98.06% e Googlelenet 96.94%.
2021
Authors
de Souza, JPC; Rocha, LF; Oliveira, PM; Moreira, AP; Boaventura Cunha, J;
Publication
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING
Abstract
The robotic grasping task persists as a modern industry problem that seeks autonomous, fast implementation, and efficient techniques. Domestic robots are also a reality demanding a delicate and accurate human-machine interaction, with precise robotic grasping and handling. From decades ago, with analytical heuristics, to recent days, with the new deep learning policies, grasping in complex scenarios is still the aim of several works' that propose distinctive approaches. In this context, this paper aims to cover recent methodologies' development and discuss them, showing state-of-the-art challenges and the gap to industrial applications deployment. Given the complexity of the related issue associated with the elaborated proposed methods, this paper formulates some fair and transparent definitions for results' assessment to provide researchers with a clear and standardised idea of the comparison between the new proposals.
2021
Authors
de Souza, JPC; Rocha, LF; Filipe, VM; Boaventura Cunha, J; Moreira, AP;
Publication
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)
Abstract
Nowadays, the robotic welding joint estimation, or weld seam tracking, has improved according to the new developments on computer vision technologies. Typically, the advances are focused on solving inaccurate procedures that advent from the manual positioning of the metal parts in welding workstations, especially in SMEs. Robotic arms, endowed with the appropriate perception capabilities, are a viable solution in this context, aiming for enhancing the production system agility whilst not increasing the production set-up time and costs. In this regard, this paper proposes a local perception pipeline to estimate joint welding points using small-sized/low-cost 3D cameras, following an eyes-on-hand approach. A metrological 3D camera comparison between Intel Realsene D435, D415, and ZED Mini is also discussed, proving that the proposed pipeline associated with standard commercial 3D cameras is viable for welding operations in an industrial environment.
2021
Authors
Baltazar, AR; dos Santos, FN; Moreira, AP; Valente, A; Cunha, JB;
Publication
ELECTRONICS
Abstract
The automation of agricultural processes is expected to positively impact the environment by reducing waste and increasing food security, maximising resource use. Precision spraying is a method used to reduce the losses during pesticides application, reducing chemical residues in the soil. In this work, we developed a smart and novel electric sprayer that can be assembled on a robot. The sprayer has a crop perception system that calculates the leaf density based on a support vector machine (SVM) classifier using image histograms (local binary pattern (LBP), vegetation index, average, and hue). This density can then be used as a reference value to feed a controller that determines the air flow, the water rate, and the water density of the sprayer. This perception system was developed and tested with a created dataset available to the scientific community and represents a significant contribution. The results of the leaf density classifier show an accuracy score that varies between 80% and 85%. The conducted tests prove that the solution has the potential to increase the spraying accuracy and precision.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.