Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by José Almeida

2023

Low-Cost Wideband Interrogation System for Fiber Optic Sensors

Authors
Araujo, JCC; dos Santos, PSS; Dias, B; de Almeida, JMMM; Coelho, LCC;

Publication
IEEE SENSORS JOURNAL

Abstract
The interrogation of optical fiber sensors (OFS) often relies on complex devices such as optical spectrum analyzers (OSAs) that are expensive with low portability and mainly suited to laboratory measurements or dedicated interrogation systems with limited spectral range. An interrogation unit was designed and fabricated using a photodetector combined with a micro-electromechanical system and a Fabry-Perot interferometer (MEMS-FPI) working as a tunable filter with a response in the range 1350-1650 nm. Deconvolution techniques were applied to mitigate the effect of the broadband response of the tunable filter on the measured signal. The performance of the unit was validated with the interrogation of long-period fiber gratings (LPFGs) as temperature, refractive index (RI), and relative humidity (RH) sensors. For the temperature, a sensitivity of 0.135 +/- 0.007 nm/degrees C was obtained, which showed a 4.9% relative error when compared to the same measurement with an OSA. For the RI, a sensitivity of 147 +/- 11 nm/RIU was obtained, which showed a relative error lower than 1% when compared to the OSA. For the humidity, sensitivities of 0.742 +/- 0.005 and 0.056 +/- 0.006 nm/%RH were obtained, with errors of 2.75% and 6.67%, respectively, when compared to a commercial dedicated interrogation system. The low relative error obtained when compared to commercial alternatives shows the potential of the system to be used in real-time applications that require portability, low cost, energy efficiency, and capacity for integration in dedicated systems.

2023

Real-Time Monitoring of Cement Paste Carbonation with In Situ Optical Fiber Sensors

Authors
da Silva, PM; Mendes, JP; Coelho, LCC; de Almeida, JMMM;

Publication
CHEMOSENSORS

Abstract
Reinforced concrete structures are prevalent in infrastructure and are of significant economic and social importance to humanity. However, they are prone to decay from cement paste carbonation. pH sensors have been developed to monitor cement paste carbonation, but their adoption by the industry remains limited. This work introduces two new methods for monitoring cement paste carbonation in real time that have been validated through the accelerated carbonation of cement paste samples. Both configurations depart from traditional pH monitoring. In the first configuration, the carbonation depth of a cement paste sample is measured using two CO2 optical fiber sensors. One sensor is positioned on the surface of the sample, while the other is embedded in the middle. As the carbonation depth progresses and reaches the embedded CO2 sensor, the combined response of the sensors changes. In the second configuration, a multimode fiber is embedded within the paste, and its carbonation is monitored by observing the increase in reflected light intensity (1.6-18%) resulting from the formation of CaCO3. Its applicability in naturally occurring carbonation is tested at concentrations of 3.2% CO2, and the influence of water is positively evaluated; thus, this setup is suitable for real-world testing and applications.

1996

Spectroscopy and Optical Amplification in Cr doped LiNbO3

Authors
Almeida, J; Leite, A; De La Rue, R; Ironside, C; Amin, J; Hempstead, M; Wilkinson, J;

Publication
Advanced Solid State Lasers

Abstract

1999

<title>Optical amplification in localized doping of Er:Ti:LiNbO3 waveguides</title>

Authors
de Almeida, JMMM; Leite, AMPP; Amin, J;

Publication
Rare-Earth-Doped Materials and Devices III

Abstract

2000

Modeling of laser emission at 0.9 µm in Nd:LiNbO 3

Authors
de Almeida, JMMM; Leite, AMPP; Amin, J;

Publication
Rare-Earth-Doped Materials and Devices IV

Abstract

2000

Spectroscopy of doped lithium niobate

Authors
de Almeida, JMMM; Leite, AMPP; Amin, J;

Publication
RARE-EARTH-DOPED MATERIALS AND DEVICES IV

Abstract
The values of measured and calculated spectroscopic quantities of lithium niobate doped with rare earth and transition metal ions, such as polarized emission and absorption cross sections, variation of fluorescence life time with temperature and concentration of the dopant, Judd-Ofelt coefficients, non-radiative transition probabilities and energy levels are presented. Wherever published data is available, comparison with measured or calculated data presented in this work is carried out. The theories utilized in the interpretation of the experimental results, such as Judd-Ofelt theory, Fuchtbauer-Lademburg relation and McCumber theory are summarily presented.

  • 15
  • 19