Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Diogo Marcelo Nogueira

2022

The robustness of Random Forest and Support Vector Machine Algorithms to a Faulty Heart Sound Segmentation

Authors
Oliveira, J; Nogueira, DM; Ferreira, CA; Jorge, AM; Coimbra, MT;

Publication
44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC 2022, Glasgow, Scotland, United Kingdom, July 11-15, 2022

Abstract
Cardiac auscultation is the key exam to screen cardiac diseases both in developed and developing countries. A heart sound auscultation procedure can detect the presence of murmurs and point to a diagnosis, thus it is an important first-line assessment and also cost-effective tool. The design automatic recommendation systems based on heart sound auscultation can play an important role in boosting the accuracy and the pervasiveness of screening tools. One such as step, consists in detecting the fundamental heart sound states, a process known as segmentation. A faulty segmentation or a wrong estimation of the heart rate might result in an incapability of heart sound classifiers to detect abnormal waves, such as murmurs. In the process of understanding the impact of a faulty segmentation, several common heart sound segmentation errors are studied in detail, namely those where the heart rate is badly estimated and those where S1/S2 and Systolic/Diastolic states are swapped in comparison with the ground truth state sequence. From the tested algorithms, support vector machine (SVMs) and random forest (RFs) shown to be more sensitive to a wrong estimation of the heart rate (an expected drop of 6% and 8% on the overall performance, respectively) than to a swap in the state sequence of events (an expected drop of 1.9% and 4.6%, respectively).

2022

Can Multi-channel Heart Sounds Analysis improve Murmur Detection?

Authors
Nogueira, M; Oliveira, J; Ferreira, CG; Coimbra, MT; Jorge, AM;

Publication
2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22)

Abstract
Cardiac auscultation is still the most cost-effective screening procedure for cardiovascular diseases. The development of computer assisted methods can empower a large variety of health professionals and thus enable mass cardiac health low-cost screening. The procedure for correct cardiac auscultation includes listening to the heart sounds of the four main auscultation spots. Until recently, attempts to develop automatic heart sound analysis methods that explore the multi-channel richness of a real auscultation, were very difficult due to the lack of adequate public datasets. In this work, we use the CirCor Dataset which is characterized by the existence of more than one heart sound per patient (each patient has heart sounds collected at different auscultation spots). Using this dataset, we evaluate and quantify the comparative impact of using a single or a multichannel approach. A single channel approach uses the sound from a single auscultation spot, whereas a multi-channel approach uses four auscultation spots in an asynchronous way. From the different classifiers tested, models that use four auscultation spots achieved a higher overall performance than those that search for abnormalities in a single heart sound spot. Our best result is a multi-channel SVM that analyzes four auscultation spots, with an overall performance of 87,4 %. This opens the path to future research using a multi-channel approach.

2023

The selection of an optimal segmentation region in physiological signals

Authors
Oliveira, J; Carvalho, M; Nogueira, D; Coimbra, M;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Physiological signals are often corrupted by noisy sources. Usually, artificial intelligence algorithms analyze the whole signal, regardless of its varying quality. Instead, experienced cardiologists search for a high-quality signal segment, where more accurate conclusions can be draw. We propose a methodology that simultaneously selects the optimal processing region of a physiological signal and determines its decoding into a state sequence of physiologically meaningful events. Our approach comprises two phases. First, the training of a neural network that then enables the estimation of the state probability distribution of a signal sample. Second, the use of the neural network output within an integer program. The latter models the problem of finding a time window by maximizing a likelihood function defined by the user. Our method was tested and validated in two types of signals, the phonocardiogram and the electrocardiogram. In phonocardiogram and electrocardiogram segmentation tasks, the system's sensitivity increased on average from 95.1% to 97.5% and from 78.9% to 83.8%, respectively, when compared to standard approaches found in the literature.

  • 2
  • 2