Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Nuno Azevedo Silva

2023

Intelligent grids for faster elemental mapping with Laser-induced breakdown spectroscopy

Authors
Capela, D; Ferreira, M; Lima, A; Jorge, P; Guimarães, D; Silva, NA;

Publication
Results in Optics

Abstract
Laser-induced breakdown spectroscopy is a spectroscopic technique that allows for fast elemental mapping of heterogeneous samples. Yet, detailed maps need high-resolution sampling grids, which can turn the task into a time-consuming process and can increase sample damage. In this work, we present the implementation of an imaged-based intelligent mesh algorithm that makes use of superpixel segmentation to optimize elemental mapping processes. Our results show that the approach can increase the elemental mapping resolution and decrease acquisition times, fostering opportunities for applications that benefit from minimal sample damage such as heritage analysis, or timely analysis such as industrial applications. © 2022 The Author(s)

2023

Interactive three-dimensional chemical element maps with laser-induced breakdown spectroscopy and photogrammetry

Authors
Lopes, T; Rodrigues, P; Cavaco, R; Capela, D; Ferreira, MFS; Guimaraes, D; Jorge, PAS; Silva, NA;

Publication
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY

Abstract
Imaging the spatial distribution of chemical elements at a sample surface is a common application of laserinduced breakdown spectroscopy with vast scientific and technological applications. Yet, typical imaging solutions only explore the creation of two-dimensional maps, which can limit the interpretability of the results and further diagnostics in three-dimensional settings. Within this context, this work explores the combination of spectral imaging techniques and photogrammetry to deploy a versatile solution for the creation of threedimensional spectral imaging models. First, by making use of a numerical algorithm that is able to match features in the spectral image with those of the three-dimensional model, we show how to match the mesh from distinct sensor modalities. Then, we describe a possible visualization workflow, making use of dedicated photogrammetry and visualization software to easily deploy interactive models. Overall, the results demonstrate the versatility of our approach and pave for the development of novel spectral imaging diagnostic strategies that are able to deliver better qualitative analysis and insight in the three-dimensional space.

2023

Exploring the hidden dimensions of an optical extreme learning machine

Authors
Silva, D; Ferreira, T; Moreira, FC; Rosa, CC; Guerreiro, A; Silva, NA;

Publication
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS

Abstract
Extreme Learning Machines (ELMs) are a versatile Machine Learning (ML) algorithm that features as the main advantage the possibility of a seamless implementation with physical systems. Yet, despite the success of the physical implementations of ELMs, there is still a lack of fundamental understanding in regard to their optical implementations. In this context, this work makes use of an optical complex media and wavefront shaping techniques to implement a versatile optical ELM playground to gain a deeper insight into these machines. In particular, we present experimental evidences on the correlation between the effective dimensionality of the hidden space and its generalization capability, thus bringing the inner workings of optical ELMs under a new light and opening paths toward future technological implementations of similar principles.

2023

Conditioning Solid-State Anode-Less Cells for the Next Generation of Batteries

Authors
Baptista, MC; Gomes, BM; Capela, D; Ferreira, MFS; Guimaraes, D; Silva, NA; Jorge, PAS; Silva, JJ; Braga, MH;

Publication
BATTERIES-BASEL

Abstract
Anode-less batteries are a promising innovation in energy storage technology, eliminating the need for traditional anodes and offering potential improvements in efficiency and capacity. Here, we have fabricated and tested two types of anode-less pouch cells, the first using solely a copper negative current collector and the other the same current collector but coated with a nucleation seed ZnO layer. Both types of cells used the same all-solid-state electrolyte, Li2.99Ba0.005ClO composite, in a cellulose matrix and a LiFePO4 cathode. Direct and indirect methods confirmed Li metal anode plating after charging the cells. The direct methods are X-ray photoelectron spectroscopy (XPS) and laser-induced breakdown spectroscopy (LIBS), a technique not divulged in the battery world but friendly to study the surface of the negative current collector, as it detects lithium. The indirect methods used were electrochemical cycling and impedance and scanning electron microscopy (SEM). It became evident the presence of plated Li on the surface of the current collector in contact with the electrolyte upon charging, both directly and indirectly. A maximum average lithium plating thickness of 2.9 mu m was charged, and 0.13 mu m was discharged. The discharge initiates from a maximum potential of 3.2 V, solely possible if an anode-like high chemical potential phase, such as Li, would form while plating. Although the ratings and energy densities are minor in this study, it was concluded that a layer of ZnO, even at 25 degrees C, allows for higher discharge power for more hours than plain Cu. It was observed that where Li plates on ZnO, Zn is not detected or barely detected by XPS. The present anode-less cells discharge quickly initially at higher potentials but may hold a discharge potential for many hours, likely due to the ferroelectric character of the electrolyte.

2023

Robust and interpretable mineral identification using laser-induced breakdown spectroscopy mapping

Authors
Capela D.; Ferreira M.F.S.; Lima A.; Dias F.; Lopes T.; Guimarães D.; Jorge P.A.S.; Silva N.A.;

Publication
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY

Abstract
Fast and precise identification of minerals in geological samples is of paramount importance for the study of rock constituents and for technological applications in the context of mining. However, analyzing samples based only on the extrinsic properties of the minerals such as color can often be insufficient, making additional analysis crucial to improve the accuracy of the methods. In this context, Laser-induced breakdown spectroscopy mapping is an interesting technique to perform the study of the distribution of the chemical elements in sample surfaces, thus allowing deeper insights to help the process of mineral identification. In this work, we present the development and deployment of a processing pipeline and algorithm to identify spatial regions of the same mineralogical composition through chemical information in a fast and automatic way. Furthermore, by providing the necessary labels to the results on a training sample, we can turn this unsupervised methodology into a classifier that can be used to generalize and classify minerals in similar but unseen samples. The results obtained show good accuracy in reproducing the expected mineral regions and extend the interpretability of previous unsupervised methods with a visualization tool for cluster assignment, thus paving for future applications in contexts requiring high-throughput mineral identification systems, such as mining.

2023

Characterization of Functional Coatings on Cork Stoppers with Laser-Induced Breakdown Spectroscopy Imaging

Authors
Ferreira, MFS; Guimaraes, D; Oliveira, R; Lopes, T; Capela, D; Marrafa, J; Meneses, P; Oliveira, A; Baptista, C; Gomes, T; Moutinho, S; Coelho, J; da Silva, RN; Silva, NA; Jorge, PAS;

Publication
SENSORS

Abstract
Evaluating the efficiency of surface treatments is a problem of paramount importance for the cork stopper industry. Generically, these treatments create coatings that aim to enhance the impermeability and lubrification of cork stoppers. Yet, current methods of surface analysis are typically time-consuming, destructive, have poor representativity or rely on indirect approaches. In this work, the use of a laser-induced breakdown spectroscopy (LIBS) imaging solution is explored for evaluating the presence of coating along the cylindrical surface and in depth. To test it, several cork stoppers with different shaped areas of untreated surface were analyzed by LIBS, making a rectangular grid of spots with multiple shots per spot, to try to identify the correspondent shape. Results show that this technique can detect the untreated area along with other features, such as leakage and holes, allowing for a high success rate of identification and for its performance at different depths, paving the way for future industry-grade quality control solutions with more complex surface analysis.

  • 10
  • 12