2023
Authors
da Silva, DQ; Rodrigues, TF; Sousa, AJ; dos Santos, FN; Filipe, V;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II
Abstract
Selective thinning is a crucial operation to reduce forest ignitable material, to control the eucalyptus species and maximise its profitability. The selection and removal of less vigorous stems allows the remaining stems to grow healthier and without competition for water, sunlight and nutrients. This operation is traditionally performed by a human operator and is time-intensive. This work simplifies selective thinning by removing the stem selection part from the human operator's side using a computer vision algorithm. For this, two distinct datasets of eucalyptus stems (with and without foliage) were built and manually annotated, and three Deep Learning object detectors (YOLOv5, YOLOv7 and YOLOv8) were tested on real context images to perform instance segmentation. YOLOv8 was the best at this task, achieving an Average Precision of 74% and 66% on non-leafy and leafy test datasets, respectively. A computer vision algorithm for automatic stem selection was developed based on the YOLOv8 segmentation output. The algorithm managed to get a Precision above 97% and a 81% Recall. The findings of this work can have a positive impact in future developments for automatising selective thinning in forested contexts.
2023
Authors
Domingues, JM; Filipe, V; Luz, F; Carita, A;
Publication
Proceedings of the International Conferences on Interfaces and Human Computer Interaction 2023, IHCI 2023; Computer Graphics, Visualization, Computer Vision and Image Processing 2023, CGVCVIP 2023; and Game and Entertainment Technologies 2023, GET 2023
Abstract
The challenge is a fundamental aspect of almost every gameplay, and immersion is one of the most widely recognized concepts in the video game industry. Since this is currently a work in progress, this study aims to preliminary research how player's perceived level of challenge affects narrative immersion during gameplay in the role-playing game (RPG) genre. This study will outline the procedures that will be undertaken, including the utilization of the Challenge Originating from Recent Gameplay Interaction Scale (CORGIS) instrument and a questionnaire to measure player immersion. These instruments will enable the assessment of the impact of the perceived challenge on narrative immersion in each use case. © 2023 Proceedings of the International Conferences on Interfaces and Human Computer Interaction 2023, IHCI 2023; Computer Graphics, Visualization, Computer Vision and Image Processing 2023, CGVCVIP 2023; and Game and Entertainment Technologies 2023, GET 2023. All rights reserved.
2024
Authors
Alves, A; Pereira, J; Khanal, S; Morais, AJ; Filipe, V;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
Modern agriculture faces important challenges for feeding a fast-growing planet's population in a sustainable way. One of the most important challenges faced by agriculture is the increasing destruction caused by pests to important crops. It is very important to control and manage pests in order to reduce the losses they cause. However, pest detection and monitoring are very resources consuming tasks. The recent development of computer vision-based technology has made it possible to automatize pest detection efficiently. In Mediterranean olive groves, the olive fly (Bactrocera oleae Rossi) is considered the key-pest of the crop. This paper presents olive fly detection using the lightweight YOLO-based model for versions 7 and 8, respectively, YOLOv7-tiny and YOLOv8n. The proposed object detection models were trained, validated, and tested using two different image datasets collected in various locations of Portugal and Greece. The images are constituted by sticky yellow trap photos and by McPhail trap photos with olive fly exemplars. The performance of the models was evaluated using precision, recall, and mAP.95. The YOLOV7-tiny model best performance is 88.3% of precision, 85% of Recall, 90% of mAP.50, and 53% of mAP.95. The YOLOV8n model best performance is 85% of precision, 85% of Recall, 90% mAP.50, and 55% of mAP.50 YOLO8n model achieved worst results than YOLOv7-tiny for a dataset without negative images (images without olive fly exemplars). Aiming at installing an experimental prototype in the olive grove, the YOLOv8n model was implemented in a Ubuntu Server 23.04 Raspberry PI 3 microcomputer.
2024
Authors
Sarmento, J; dos Santos, FN; Aguiar, AS; Filipe, V; Valente, A;
Publication
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Abstract
Human-robot collaboration (HRC) is becoming increasingly important in advanced production systems, such as those used in industries and agriculture. This type of collaboration can contribute to productivity increase by reducing physical strain on humans, which can lead to reduced injuries and improved morale. One crucial aspect of HRC is the ability of the robot to follow a specific human operator safely. To address this challenge, a novel methodology is proposed that employs monocular vision and ultra-wideband (UWB) transceivers to determine the relative position of a human target with respect to the robot. UWB transceivers are capable of tracking humans with UWB transceivers but exhibit a significant angular error. To reduce this error, monocular cameras with Deep Learning object detection are used to detect humans. The reduction in angular error is achieved through sensor fusion, combining the outputs of both sensors using a histogram-based filter. This filter projects and intersects the measurements from both sources onto a 2D grid. By combining UWB and monocular vision, a remarkable 66.67% reduction in angular error compared to UWB localization alone is achieved. This approach demonstrates an average processing time of 0.0183s and an average localization error of 0.14 meters when tracking a person walking at an average speed of 0.21 m/s. This novel algorithm holds promise for enabling efficient and safe human-robot collaboration, providing a valuable contribution to the field of robotics.
2023
Authors
Gonçalves, G; Gonçalves, C; Rodrigues, P; Barbosa, L; Filipe, V; Melo, M; Bessa, M;
Publication
International Conference on Graphics and Interaction, ICGI 2023, Tomar, Portugal, November 2-3, 2023
Abstract
The modern manufacturing environment has adjusted to technological improvements. With Virtual Reality applications geared for factory training are becoming increasingly common. The industry is seeking ways to lower downtimes, resource component waste, risk of possible work accidents and decrease expenses, which can be achieved by engaging in new techniques of training professionals. This article evaluates a VR training application developed within the scope of the R&D project, aimed at training personnel in vehicle antenna production lines. We included the following variables: previous experience with VR technology, cybersickness, immersive tendencies, presence, system usability and satisfaction. Both the system usability scores and satisfaction were considered acceptable. We also found positive correlations between several variables, highlighting the possible influence of attention and familiarity with VR technology on the user experience. In contrast, a negative correlation raised questions about participants' expectations regarding VR technology and their resulting experience.
2024
Authors
Limonova, V; dos Santos, AMP; Sao Mamede, JHP; Filipe, VMD;
Publication
GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 4, WORLDCIST 2024
Abstract
The decline in student attendance and engagement in Higher Education (HE) is a pressing concern for educational institutions worldwide. Traditional lecture-style teaching is no longer effective, and students often become disinterested and miss classes, impeding their academic progress. While Gamification has improved learning outcomes, the integration of Artificial Intelligence (AI) has the potential to revolutionise the educational experience. The combination of AI and Gamification offers numerous research opportunities and paves the way for updated academic approaches to increase student engagement and attendance. Extensive research has been conducted to uncover the correlation between student attendance and engagement in HE. Studies consistently reveal that regular attendance leads to better academic performance. On the other hand, absenteeism can lead to disengagement and poor academic performance, stunting a student's growth and success. This position paper proposes integrating Gamification and AI to improve attendance and engagement. The approach involves incorporating game-like elements into the learning process to make it more interactive and rewarding. AI-powered tools can track student progress and provide personalised feedback, motivating students to stay engaged. This approach fosters a more engaging and fruitful educational journey, leading to better learning outcomes. This position paper will inspire further research in AI-Gamification integration, leading to innovative teaching methods that enhance student engagement and attendance in HE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.