2011
Authors
Peito, F; Pereira, G; Leitao, A; Dias, L;
Publication
ECEC' 2011:17TH EUROPEAN CONCURRENT ENGINEERING CONFERENCE / 7TH FUTURE BUSINESS TECHNOLOGY CONFERENCE
Abstract
This paper is concerned with the use of simulation as a decision support tool in maintenance systems, specifically in MFS (Maintenance Float Systems). For this purpose and due to its high complexity, in this paper the authors explore and present a possible way to construct a MFS model using Arena simulation language, where some of the most common performance measures are identified, calculated and analysed.
2023
Authors
Yamada, L; Rampazzo, P; Yamada, F; Guimaraes, L; Leitao, A; Barbosa, F;
Publication
OPERATIONAL RESEARCH, IO 2022-OR
Abstract
Data clustering combined with multiobjective optimization has become attractive when the structure and the number of clusters in a dataset are unknown. Data clustering is the main task of exploratory data mining and a standard statistical data analysis technique used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. This project analyzes data to extract possible failure patterns in Solar Photovoltaic (PV) Panels. When managing PV Panels, preventive maintenance procedures focus on identifying and monitoring potential equipment problems. Failure patterns such as soiling, shadowing, and equipment damage can disturb the PV system from operating efficiently. We propose a multiobjective evolutionary algorithm that uses different distance functions to explore the conflicts between different perspectives of the problem. By the end, we obtain a non-dominated set, where each solution carries out information about a possible clustering structure. After that, we pursue a-posteriori analysis to exploit the knowledge of non-dominated solutions and enhance the fault detection process of PV panels.
2024
Authors
Barbosa, F; Casacio, L; Bacalhau, ET; Leitao, A; Guimaraes, L;
Publication
UTILITIES POLICY
Abstract
Hydropower currently generates more than all other renewable energies combined. Considering the challenges of climate change and the transition to green energy, it is expected to remain the world's largest source of renewable electricity generation. This paper proposes a tool for performance evaluation and benchmarking of hydropower generation to inform dispatching. Through them, strengths and weaknesses of asset operations can be set, identifying areas with the best performance, gathering insights from their strategies and best practices, and comprehending factors that lead to variations in performance levels. The results allow for optimising energy resource use by indicating the dispatching rules with maximum power production and minimum wearand-tear impact. This framework allows the formulation of practical guidelines for dispatching policies. The proposed methodology is applied to analyse two real-world case studies: the Vogelgr & uuml;n run of river hydropower plant (France) and the Frades 2 pump-storage powerplant (Portugal).
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.