2016
Authors
Castro, H; Monteiro, J; Pereira, A; Silva, D; Coelho, G; Carvalho, P;
Publication
MULTIMEDIA TOOLS AND APPLICATIONS
Abstract
Over the last decade noticeable progress has occurred in automated computer interpretation of visual information. Computers running artificial intelligence algorithms are growingly capable of extracting perceptual and semantic information from images, and registering it as metadata. There is also a growing body of manually produced image annotation data. All of this data is of great importance for scientific purposes as well as for commercial applications. Optimizing the usefulness of this, manually or automatically produced, information implies its precise and adequate expression at its different logical levels, making it easily accessible, manipulable and shareable. It also implies the development of associated manipulating tools. However, the expression and manipulation of computer vision results has received less attention than the actual extraction of such results. Hence, it has experienced a smaller advance. Existing metadata tools are poorly structured, in logical terms, as they intermix the declaration of visual detections with that of the observed entities, events and comprising context. This poor structuring renders such tools rigid, limited and cumbersome to use. Moreover, they are unprepared to deal with more advanced situations, such as the coherent expression of the information extracted from, or annotated onto, multi-view video resources. The work here presented comprises the specification of an advanced XML based syntax for the expression and processing of Computer Vision relevant metadata. This proposal takes inspiration from the natural cognition process for the adequate expression of the information, with a particular focus on scenarios of varying numbers of sensory devices, notably, multi-view video.
2016
Authors
Pereira, A; Familiar, A; Moreira, B; Terroso, T; Carvalho, P; Corte Real, L;
Publication
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016)
Abstract
Tracking objects in video is a very challenging research topic, particularly when people in groups are tracked, with partial and full occlusions and group dynamics being common difficulties. Hence, its necessary to deal with group tracking, formation and separation, while assuring the overall consistency of the individuals. This paper proposes enhancements to a group management and tracking algorithm that receives information of the persons in the scene, detects the existing groups and keeps track of the persons that belong to it. Since input information for group management algorithms is typically provided by a tracking algorithm and it is affected by noise, mechanisms for handling such noisy input tracking information were also successfully included. Performed experiments demonstrated that the described algorithm outperformed state-of-the-art approaches.
2020
Authors
Pereira, A; Carvalho, P; Coelho, G; Corte Real, L;
Publication
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
Abstract
Color and color differences are critical aspects in many image processing and computer vision applications. A paradigmatic example is object segmentation, where color distances can greatly influence the performance of the algorithms. Metrics for color difference have been proposed in the literature, including the definition of standards such as CIEDE2000, which quantifies the change in visual perception of two given colors. This standard has been recommended for industrial computer vision applications, but the benefits of its application have been impaired by the complexity of the formula. This paper proposes a new strategy that improves the usability of the CIEDE2000 metric when a maximum acceptable distance can be imposed. We argue that, for applications where a maximum value, above which colors are considered to be different, can be established, then it is possible to reduce the amount of calculations of the metric, by preemptively analyzing the color features. This methodology encompasses the benefits of the metric while overcoming its computational limitations, thus broadening the range of applications of CIEDE2000 in both the computer vision algorithms and computational resource requirements.
2021
Authors
Carvalho, P; Pereira, A; Viana, P;
Publication
APPLIED SCIENCES-BASEL
Abstract
Advertisements are often inserted in multimedia content, and this is particularly relevant in TV broadcasting as they have a key financial role. In this context, the flexible and efficient processing of TV content to identify advertisement segments is highly desirable as it can benefit different actors, including the broadcaster, the contracting company, and the end user. In this context, detecting the presence of the channel logo has been seen in the state-of-the-art as a good indicator. However, the difficulty of this challenging process increases as less prior data is available to help reduce uncertainty. As a result, the literature proposals that achieve the best results typically rely on prior knowledge or pre-existent databases. This paper proposes a flexible method for processing TV broadcasting content aiming at detecting channel logos, and consequently advertising segments, without using prior data about the channel or content. The final goal is to enable stream segmentation identifying advertisement slices. The proposed method was assessed over available state-of-the-art datasets as well as additional and more challenging stream captures. Results show that the proposed method surpasses the state-of-the-art.
2022
Authors
Capozzi, L; Barbosa, V; Pinto, C; Pinto, JR; Pereira, A; Carvalho, PM; Cardoso, JS;
Publication
IEEE ACCESS
Abstract
With the advent of self-driving cars and the push by large companies into fully driverless transportation services, monitoring passenger behaviour in vehicles is becoming increasingly important for several reasons, such as ensuring safety and comfort. Although several human action recognition (HAR) methods have been proposed, developing a true HAR system remains a very challenging task. If the dataset used to train a model contains a small number of actors, the model can become biased towards these actors and their unique characteristics. This can cause the model to generalise poorly when confronted with new actors performing the same actions. This limitation is particularly acute when developing models to characterise the activities of vehicle occupants, for which data sets are short and scarce. In this study, we describe and evaluate three different methods that aim to address this actor bias and assess their performance in detecting in-vehicle violence. These methods work by removing specific information about the actor from the model's features during training or by using data that is independent of the actor, such as information about body posture. The experimental results show improvements over the baseline model when evaluated with real data. On the Hanau03 Vito dataset, the accuracy improved from 65.33% to 69.41%. On the Sunnyvale dataset, the accuracy improved from 82.81% to 86.62%.
2022
Authors
Pereira, A; Carvalho, P; Corte Real, L;
Publication
SIGNAL IMAGE AND VIDEO PROCESSING
Abstract
Color comparison is a key aspect in many areas of application, including industrial applications, and different metrics have been proposed. In many applications, this comparison is required to be closely related to human perception of color differences, thus adding complexity to the process. To tackle this, different approaches were proposed through the years, culminating in the CIEDE2000 formulation. In our previous work, we showed that simple color properties could be used to reduce the computational time of a color similarity decision process that employed this metric, which is recognized as having high computational complexity. In this paper, we show mathematically and experimentally that these findings can be adapted and extended to the recently proposed CIEDE2000 PF metric, which has been recommended by the CIE for industrial applications. Moreover, we propose new efficient models that not only achieve lower error rates, but also outperform the results obtained for the CIEDE2000 metric.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.