Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Joana Isabel Paiva

2018

Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach

Authors
Paiva, JS; Cardoso, J; Pereira, T;

Publication
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS

Abstract
Objective: The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. Materials and methods: The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39 pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). Results and discussion: SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917 +/- 0.0024 and a F-Measure of 0.9925 +/- 0.0019, in comparison with ANN, which reached the values of 0.9847 +/- 0.0032 and 0.9852 +/- 0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. Conclusion: The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW.

2018

Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach

Authors
Paiva, JS; Ribeiro, RSR; Cunha, JPS; Rosa, CC; Jorge, PAS;

Publication
SENSORS

Abstract
Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.

2016

Regression Approach for Automatic Detection of Attention Lapses

Authors
Georgieva, K; Georgieva, P; Georgieva, O; Ribeiro, MJ; Paiva, JS;

Publication
2016 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS)

Abstract
Certain professions rely on the ability to maintain attention constant throughout long periods of time, like truck drivers, air traffic controllers, health professionals, among others. These could greatly benefit from the development of a real-time alerting system that will call subjects back to task even before lapses occur or shortly after they happened. Attention levels have been shown to relate to the properties of the electroencephalogram (EEG). In this paper, we propose for the first time a regression approach to detect fluctuating levels of attention, based on spatiotemporal patterns extracted from EEG recordings. Previous studies have shown that reaction time is related to the level of task related attention. Moment-to-moment fluctuations in attention level are paralleled by moment-tomoment fluctuations in reaction time (faster reaction times are related to high attention allocation). We took advantage of this parallel and used reaction time data obtained during a repetitive visuomotor task as a proxy for task related attention level. Furthermore, instead of defining high attention versus low attention periods, we labeled each moment according to a continuum based on each trial's reaction time. In order to determine if it is possible to predict attention level from EEG features, we developed regression models between the extracted features and the subject's reaction time.

2016

An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers

Authors
Pereira, T; Paiva, JS; Correia, C; Cardoso, J;

Publication
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING

Abstract
The measurement and analysis of the arterial pulse waveform (APW) are the means for cardiovascular risk assessment. Optical sensors represent an attractive instrumental solution to APW assessment due to their truly non-contact nature that makes the measurement of the skin surface displacement possible, especially at the carotid artery site. In this work, an automatic method to extract and classify the acquired data of APW signals and noise segments was proposed. Two classifiers were implemented: k-nearest neighbours and support vector machine (SVM), and a comparative study was made, considering widely used performance metrics. This work represents a wide study in feature creation for APW. A pool of 37 features was extracted and split in different subsets: amplitude features, time domain statistics, wavelet features, cross-correlation features and frequency domain statistics. The support vector machine recursive feature elimination was implemented for feature selection in order to identify the most relevant feature. The best result (0.952 accuracy) in discrimination between signals and noise was obtained for the SVM classifier with an optimal feature subset .

2016

Spontaneous Fluctuations in Sensory Processing Predict Within-Subject Reaction Time Variability

Authors
Ribeiro, MJ; Paiva, JS; Castelo Branco, M;

Publication
FRONTIERS IN HUMAN NEUROSCIENCE

Abstract
When engaged in a repetitive task our performance fluctuates from trial-to trial. In particular, inter-trial reaction time variability has been the subject of considerable research. It has been claimed to be a strong biomarker of attention deficits, increases with frontal dysfunction, and predicts age-related cognitive decline. Thus, rather than being just a consequence of noise in the system, it appears to be under the control of a mechanism that breaks down under certain pathological conditions. Although the underlying mechanism is still an open question, consensual hypotheses are emerging regarding the neural correlates of reaction time inter-trial intra-individual variability. Sensory processing, in particular, has been shown to covary with reaction time, yet the spatio-temporal profile of the moment-to-moment variability in sensory processing is still poorly characterized. The goal of this study was to characterize the intra-individual variability in the time course of single-trial visual evoked potentials and its relationship with inter trial reaction time variability. For this, we chose to take advantage of the high temporal resolution of the electroencephalogram (EEG) acquired while participants were engaged in a 2-choice reaction time task. We studied the link between single trial event-related potentials (ERPs) and reaction time using two different analyses: (1) time point by time point correlation analyses thereby identifying time windows of interest; and (2) correlation analyses between single trial measures of peak latency and amplitude and reaction time. To improve extraction of single trial [RP measures related with activation of the visual cortex, we used an independent component analysis (ICA) procedure. Our FRP analysis revealed a relationship between the N1 visual evoked potential and reaction time. The earliest time point presenting a significant correlation of its respective amplitude with reaction time occurred 175 ms after stimulus onset, just after the onset of the N1 peak. Interestingly, single trial N1 latency correlated significantly with reaction time, while N1 amplitude did not. In conclusion, our findings suggest that inter-trial variability in the timing of extrastriate visual processing contributes to reaction time variability.

2017

Beat-to-beat ECG Features for Time Resolution Improvements in Stress Detection

Authors
Axman, D; Paiva, JS; de La Torre, F; Cunha, JPS;

Publication
2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO)

Abstract
In stress sensing, Window-derived Heart Rate Variability (W-HRV) methods are by far the most heavily used feature extraction methods. However, these W-HRV methods come with a variety of tradeoffs that motivate the development of alternative methods in stress sensing. We compare our method of using HeartBeat Morphology (HBM) features for stress sensing to the traditional W-HRV method for feature extraction. In order to adequately evaluate these methods we conduct a Trier Social Stress Test (TSST) to elicit stress in a group of 13 firefighters while recording their ECG, actigraphy, and psychological self-assessment measures. We utilize the data from this experiment to analyze both feature extraction methods in terms of computational complexity, detection resolution performance, and event localization performance. Our results show that each method has an ideal niche for its use in stress sensing. HBM features tend to be more effective in an online, stress detection context. W-HRV shows to be more suitable for offline post processing to determine the exact localization of the stress event.

  • 2
  • 5