2015
Authors
Monteiro, JC; Cardoso, JS;
Publication
SENSORS
Abstract
Humans perform and rely on face recognition routinely and effortlessly throughout their daily lives. Multiple works in recent years have sought to replicate this process in a robust and automatic way. However, it is known that the performance of face recognition algorithms is severely compromised in non-ideal image acquisition scenarios. In an attempt to deal with conditions, such as occlusion and heterogeneous illumination, we propose a new approach motivated by the global precedent hypothesis of the human brain's cognitive mechanisms of perception. An automatic modeling of SIFT keypoint descriptors using a Gaussian mixture model (GMM)-based universal background model method is proposed. A decision is, then, made in an innovative hierarchical sense, with holistic information gaining precedence over a more detailed local analysis. The algorithm was tested on the ORL, ARand Extended Yale B Face databases and presented state-of-the-art performance for a variety of experimental setups.
2015
Authors
Wen, CH; Rebelo, A; Zhang, J; Cardoso, J;
Publication
PATTERN RECOGNITION LETTERS
Abstract
Optical music recognition (OMR) is an important tool to recognize a scanned page of music sheet automatically, which has been applied to preserving music scores. In this paper, we propose a new OMR system to recognize the music symbols without segmentation. We present a new classifier named combined neural network (CNN) that offers superior classification capability. We conduct tests on fifteen pages of music sheets, which are real and scanned images. The tests show that the proposed method constitutes an interesting contribution to OMR.
2015
Authors
Monteiro, JC; Cardoso, JS;
Publication
BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, BIOSTEC 2015
Abstract
In recent years the focus of research in the fields of iris and face recognition has turned towards alternative traits to aid in the recognition process under less constrained acquisition scenarios. The present work assesses the potential of the periocular region as an alternative to both iris and face in such conditions. An automatic modeling of SIFT descriptors, using a GMM-based Universal Background Model method, is proposed. This framework is based on the Universal Background Model strategy, first proposed for speaker verification, extrapolated into an image-based application. Such approach allows a tight coupling between individual models and a robust likelihood-ratio decision step. The algorithm was tested on the UBIRIS. v2 and the MobBIO databases and presented state-of-the-art performance for a variety of experimental setups.
2015
Authors
Cardoso, JS; Domingues, I; Oliveira, HP;
Publication
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
Abstract
Breast cancer is one of the most mediated malignant diseases, because of its high incidence and prevalence, but principally due to its physical and psychological invasiveness. The study of this disease using computer science tools resorts often to the image segmentation operation. Image segmentation, although having been extensively studied, is still an open problem. Shortest path algorithms are extensively used to tackle this problem. There are, however, applications where the starting and ending positions of the shortest path need to be constrained, defining a closed contour enclosing a previously detected seed. Mass and calcification segmentation in mammograms and areola segmentation in digital images are two particular examples of interest within the field of breast cancer research. Usually the closed contour computation is addressed by transforming the image into polar coordinates, where the closed contour is transformed into an open contour between two opposite margins. In this work, after illustrating some of the limitations of this approach, we show how to compute the closed contour in the original coordinate space. After defining a directed acyclic graph appropriate for this task, we address the main difficulty in operating in the original coordinate space. Since small paths collapsing in the seed point are naturally favored, we modulate the cost of the edges to counterbalance this bias. A thorough evaluation is conducted with datasets from the breast cancer field. The algorithm is shown to be fast and reliable and suffers no loss in resolution.
2016
Authors
Fernandes, K; Cardoso, JS;
Publication
NEUROCOMPUTING
Abstract
In different areas of knowledge, phenomena are represented by directional-angular or periodic-data; from wind direction and geographical coordinates to time references like days of the week or months of the calendar. These values are usually represented in a linear scale, and restricted to a given range (e.g. [0,2 pi)), hiding the real nature of this information. Therefore, dealing with directional data requires special methods. So far, the design of classifiers for periodic variables adopts a generative approach based on the usage of the von Mises distribution or variants. Since for non-periodic variables state of the art approaches are based on non-generative methods, it is pertinent to investigate the suitability of other approaches for periodic variables. We propose a discriminative Directional Logistic Regression model able to deal with angular data, which does not make any assumption on the data distribution. Also, we study the expressiveness of this model for any number of features. Finally, we validate our model against the previously proposed directional naive Bayes approach and against a Support Vector Machine with a directional Radial Basis Function kernel with synthetic and real data obtaining competitive results.
2015
Authors
Khoshrou, S; Cardoso, JS; Teixeira, LF;
Publication
MACHINE LEARNING
Abstract
Nowadays, video surveillance systems are taking the first steps toward automation, in order to ease the burden on human resources as well as to avoid human error. As the underlying data distribution and the number of concepts change over time, the conventional learning algorithms fail to provide reliable solutions for this setting. In this paper, we formalize a learning concept suitable for multi-camera video surveillance and propose a learning methodology adapted to that new paradigm. The proposed framework resorts to the universal background model to robustly learn individual object models from small samples and to more effectively detect novel classes. The individual models are incrementally updated in an ensemble-based approach, with older models being progressively forgotten. The framework is designed to detect and label new concepts automatically. The system is also designed to exploit active learning strategies, in order to interact wisely with operator, requesting assistance in the most ambiguous to classify observations. The experimental results obtained both on real and synthetic data sets verify the usefulness of the proposed approach.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.