Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Joaquim João Sousa

2020

Digital Reconstitution of Road Traffic Accidents: A Flexible Methodology Relying on UAV Surveying and Complementary Strategies to Support Multiple Scenarios

Authors
Padua, L; Sousa, J; Vanko, J; Hruska, J; Adao, T; Peres, E; Sousa, A; Sousa, JJ;

Publication
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH

Abstract
The reconstitution of road traffic accidents scenes is a contemporary and important issue, addressed both by private and public entities in different countries around the world. However, the task of collecting data on site is not generally focused on with the same orientation and relevance. Addressing this type of accident scenario requires a balance between two fundamental yet competing concerns: (1) information collecting, which is a thorough and lengthy process and (2) the need to allow traffic to flow again as quickly as possible. This technical note proposes a novel methodology that aims to support road traffic authorities/professionals in activities involving the collection of data/evidences of motor vehicle collision scenarios by exploring the potential of using low-cost, small-sized and light-weight unmanned aerial vehicles (UAV). A high number of experimental tests and evaluations were conducted in various working conditions and in cooperation with the Portuguese law enforcement authorities responsible for investigating road traffic accidents. The tests allowed for concluding that the proposed method gathers all the conditions to be adopted as a near future approach for reconstituting road traffic accidents and proved to be: faster, more rigorous and safer than the current manual methodologies used not only in Portugal but also in many countries worldwide.

2020

Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities

Authors
Guimaraes, N; Padua, L; Marques, P; Silva, N; Peres, E; Sousa, JJ;

Publication
REMOTE SENSING

Abstract
Currently, climate change poses a global threat, which may compromise the sustainability of agriculture, forestry and other land surface systems. In a changing world scenario, the economic importance of Remote Sensing (RS) to monitor forests and agricultural resources is imperative to the development of agroforestry systems. Traditional RS technologies encompass satellite and manned aircraft platforms. These platforms are continuously improving in terms of spatial, spectral, and temporal resolutions. The high spatial and temporal resolutions, flexibility and lower operational costs make Unmanned Aerial Vehicles (UAVs) a good alternative to traditional RS platforms. In the management process of forests resources, UAVs are one of the most suitable options to consider, mainly due to: (1) low operational costs and high-intensity data collection; (2) its capacity to host a wide range of sensors that could be adapted to be task-oriented; (3) its ability to plan data acquisition campaigns, avoiding inadequate weather conditions and providing data availability on-demand; and (4) the possibility to be used in real-time operations. This review aims to present the most significant UAV applications in forestry, identifying the appropriate sensors to be used in each situation as well as the data processing techniques commonly implemented.

2020

Individual Grapevine Analysis in a Multi-Temporal Context Using UAV-Based Multi-Sensor Imagery

Authors
Padua, L; Adao, T; Sousa, A; Peres, E; Sousa, JJ;

Publication
REMOTE SENSING

Abstract
The use of unmanned aerial vehicles (UAVs) for remote sensing applications in precision viticulture significantly increased in the last years. UAVs' capability to acquire high spatiotemporal resolution and georeferenced imagery from different sensors make them a powerful tool for a better understanding of vineyard spatial and multitemporal heterogeneity, allowing the estimation of parameters directly impacting plants' health status. In this way, the decision support process in precision viticulture can be greatly improved. However, despite the proliferation of these innovative technologies in viticulture, most of the published studies rely only on data from a single sensor in order to achieve a specific goal and/or in a single/small period of the vineyard development. In order to address these limitations and fully exploit the advantages offered by the use of UAVs, this study explores the multi-temporal analysis of vineyard plots at a grapevine scale using different imagery sensors. Individual grapevine detection enables the estimation of biophysical and geometrical parameters, as well as missing grapevine plants. A validation procedure was carried out in six vineyard plots focusing on the detected number of grapevines and missing grapevines. A high overall agreement was obtained concerning the number of grapevines present in each row (99.8%), as well as in the individual grapevine identification (mean overall accuracy of 97.5%). Aerial surveys were conducted in two vineyard plots at different growth stages, being acquired for RGB, multispectral and thermal imagery. Moreover, the extracted individual grapevine parameters enabled us to assess the vineyard variability in a given epoch and to monitor its multi-temporal evolution. This type of analysis is critical for precision viticulture, constituting as a tool to significantly support the decision-making process.

2020

Effectiveness of Sentinel-2 in Multi-Temporal Post-Fire Monitoring When Compared with UAV Imagery

Authors
Padua, L; Guimaraes, N; Adao, T; Sousa, A; Peres, E; Sousa, JJ;

Publication
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION

Abstract
Unmanned aerial vehicles (UAVs) have become popular in recent years and are now used in a wide variety of applications. This is the logical result of certain technological developments that occurred over the last two decades, allowing UAVs to be equipped with different types of sensors that can provide high-resolution data at relatively low prices. However, despite the success and extraordinary results achieved by the use of UAVs, traditional remote sensing platforms such as satellites continue to develop as well. Nowadays, satellites use sophisticated sensors providing data with increasingly improving spatial, temporal and radiometric resolutions. This is the case for the Sentinel-2 observation mission from the Copernicus Programme, which systematically acquires optical imagery at high spatial resolutions, with a revisiting period of five days. It therefore makes sense to think that, in some applications, satellite data may be used instead of UAV data, with all the associated benefits (extended coverage without the need to visit the area). In this study, Sentinel-2 time series data performances were evaluated in comparison with high-resolution UAV-based data, in an area affected by a fire, in 2017. Given the 10-m resolution of Sentinel-2 images, different spatial resolutions of the UAV-based data (0.25, 5 and 10 m) were used and compared to determine their similarities. The achieved results demonstrate the effectiveness of satellite data for post-fire monitoring, even at a local scale, as more cost-effective than UAV data. The Sentinel-2 results present a similar behavior to the UAV-based data for assessing burned areas.

2020

Smartphone Applications Targeting Precision Agriculture Practices-A Systematic Review

Authors
Mendes, J; Pinho, TM; dos Santos, FN; Sousa, JJ; Peres, E; Boaventura Cunha, J; Cunha, M; Morais, R;

Publication
AGRONOMY-BASEL

Abstract
Traditionally farmers have used their perceptual sensorial systems to diagnose and monitor their crops health and needs. However, humans possess five basic perceptual systems with accuracy levels that can change from human to human which are largely dependent on the stress, experience, health and age. To overcome this problem, in the last decade, with the help of the emergence of smartphone technology, new agronomic applications were developed to reach better, cost-effective, more accurate and portable diagnosis systems. Conventional smartphones are equipped with several sensors that could be useful to support near real-time usual and advanced farming activities at a very low cost. Therefore, the development of agricultural applications based on smartphone devices has increased exponentially in the last years. However, the great potential offered by smartphone applications is still yet to be fully realized. Thus, this paper presents a literature review and an analysis of the characteristics of several mobile applications for use in smart/precision agriculture available on the market or developed at research level. This will contribute to provide to farmers an overview of the applications type that exist, what features they provide and a comparison between them. Also, this paper is an important resource to help researchers and applications developers to understand the limitations of existing tools and where new contributions can be performed.

2020

Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data

Authors
Padua, L; Marques, P; Martins, L; Sousa, A; Peres, E; Sousa, JJ;

Publication
REMOTE SENSING

Abstract
Phytosanitary conditions can hamper the normal development of trees and significantly impact their yield. The phytosanitary condition of chestnut stands is usually evaluated by sampling trees followed by a statistical extrapolation process, making it a challenging task, as it is labor-intensive and requires skill. In this study, a novel methodology that enables multi-temporal analysis of chestnut stands using multispectral imagery acquired from unmanned aerial vehicles is presented. Data were collected in different flight campaigns along with field surveys to identify the phytosanitary issues affecting each tree. A random forest classifier was trained with sections of each tree crown using vegetation indices and spectral bands. These were first categorized into two classes: (i) absence or (ii) presence of phytosanitary issues. Subsequently, the class with phytosanitary issues was used to identify and classify either biotic or abiotic factors. The comparison between the classification results, obtained by the presented methodology, with ground-truth data, allowed us to conclude that phytosanitary problems were detected with an accuracy rate between 86% and 91%. As for determining the specific phytosanitary issue, rates between 80% and 85% were achieved. Higher accuracy rates were attained in the last flight campaigns, the stage when symptoms are more prevalent. The proposed methodology proved to be effective in automatically detecting and classifying phytosanitary issues in chestnut trees throughout the growing season. Moreover, it is also able to identify decline or expansion situations. It may be of help as part of decision support systems that further improve on the efficient and sustainable management practices of chestnut stands.

  • 12
  • 25