2023
Authors
Carneiro, GA; Texeira, A; Morais, R; Sousa, JJ; Cunha, A;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II
Abstract
Grape varieties play an important role in wine's production chain, its identification is crucial for controlling and regulating the production. Nowadays, two techniques are widely used, ampelography and molecular analysis. However, there are problems with both of them. In this scenario, Deep Learning classifiers emerged as a tool to automatically classify grape varieties. A problem with the classification of on-field acquired images is that there is a lot of information unrelated to the target classification. In this study, the use of segmentation before classification to remove such unrelated information was analyzed. We used two grape varieties identification datasets to fine-tune a pre-trained EfficientNetV2S. Our results showed that segmentation can slightly improve classification performance if only unrelated information is removed.
2024
Authors
Guimaraes, N; Fraga, H; Sousa, JJ; Pádua, L; Bento, A; Couto, P;
Publication
AGRIENGINEERING
Abstract
Almonds are becoming a central element in the gastronomic and food industry worldwide. Over the last few years, almond production has increased globally. Portugal has become the third most important producer in Europe, where this increasing trend is particularly evident. However, the susceptibility of almond trees to changing climatic conditions presents substantial risks, encompassing yield reduction and quality deterioration. Hence, yield forecasts become crucial for mitigating potential losses and aiding decisionmakers within the agri-food sector. Recent technological advancements and new data analysis techniques have led to the development of more suitable methods to model crop yields. Herein, an innovative approach to predict almond yields in the Tras-os-Montes region of Portugal was developed, by using machine learning regression models (i.e., the random forest regressor, XGBRegressor, gradient boosting regressor, bagging regressor, and AdaBoost regressor), coupled with remote sensing data obtained from different satellite platforms. Satellite data from both proprietary and free platforms at different spatial resolutions were used as features in the study (i.e., the GSMP: 11.13 km, Terra: 1 km, Landsat 8: 30 m, Sentinel-2: 10 m, and PlanetScope: 3 m). The best possible combination of features was analyzed and hyperparameter tuning was applied to enhance the prediction accuracy. Our results suggest that high-resolution data (PlanetScope) combined with irrigation information, vegetation indices, and climate data significantly improves almond yield prediction. The XGBRegressor model performed best when using PlanetScope data, reaching a coefficient of determination (R2) of 0.80. However, alternative options using freely available data with lower spatial resolution, such as GSMaP and Terra MODIS LST, also showed satisfactory performance (R2 = 0.68). This study highlights the potential of integrating machine learning models and remote sensing data for accurate crop yield prediction, providing valuable insights for informed decision support in the almond sector, contributing to the resilience and sustainability of this crop in the face of evolving climate dynamics.
2023
Authors
Duque, JST; Ruiz-Armenteros, AM; Alvarez, GEA; Matiz, G; Sousa, JJ;
Publication
REMOTE SENSING
Abstract
Bogota, the largest urban center and capital city of Colombia, is located within the Bogota savanna, which originated as a lake in the central part of the Colombian Eastern Cordillera. Over time, the lake transformed into a gently undulating plain with horizontally deposited sediments that formed around five million years ago. Over the last few decades, the region has undergone significant population growth and rapid urban development, largely driven by migration from rural areas. This development has substantially impacted the subsidence observed in the city, primarily due to the extraction of groundwater. A previous study by the Servicio Geologico Colombiano (SGC) utilized data from GNSS stations and synthetic aperture radar interferometry (InSAR) with TerraSAR-X SAR between 2011 and 2017 to identify a subsidence pattern in the central region of Bogota. The purpose of the study was to evaluate the risks and potential disasters associated with the subsidence phenomenon. Our study investigates both the subsidence in Bogota, previously studied, as well as the rural savanna area, which is currently undergoing significant residential and industrial development. We utilized multi-temporal InSAR (MT-InSAR) techniques with Sentinel-1 SAR images from 2014 to 2021. The analysis results indicate that the outer regions of the city display the most significant subsidence, extending from the center to the north. The subsidence velocities in these areas reach approximately 5-6 cm/year.
2023
Authors
Marques, P; Padua, L; Sousa, JJ; Fernandes Silva, A;
Publication
REMOTE SENSING
Abstract
Global warming presents a significant threat to the sustainability of agricultural systems, demanding increased irrigation to mitigate the impacts of prolonged dry seasons. Efficient water management strategies, including deficit irrigation, have thus become essential, requiring continuous crop monitoring. However, conventional monitoring methods are laborious and time-consuming. This study investigates the potential of aerial imagery captured by unmanned aerial vehicles (UAVs) to predict critical water stress indicators-relative water content (RWC), midday leaf water potential (psi MD), stomatal conductance (gs)-as well as the pigment content (chlorophyll ab, chlorophyll a, chlorophyll b and carotenoids) of trees in an olive orchard. Both thermal and spectral vegetation indices are calculated and correlated using linear and exponential regression models. The results reveal that the thermal vegetation indices contrast in estimating the water stress indicators, with the Crop Water Stress Index (CWSI) demonstrating higher precision in predicting the RWC (R2 = 0.80), psi MD (R2 = 0.61) and gs (R2 = 0.72). Additionally, the Triangular Vegetation Index (TVI) shows superior accuracy in predicting the chlorophyll ab (R2 = 0.64) and chlorophyll a (R2 = 0.61), while the Modified Chlorophyll Absorption in Reflectance Index (MCARI) proves most effective for estimating the chlorophyll b (R2 = 0.52). This study emphasizes the potential of UAV-based multispectral and thermal infrared imagery in precision agriculture, enabling assessments of the water status and pigment content. Moreover, these results highlight the vital importance of this technology in optimising resource allocation and enhancing olive production, critical steps towards sustainable agriculture in the face of global warming.
2024
Authors
Bakon, M; Teixeira, AC; Padua, L; Morais, R; Papco, J; Kubica, L; Rovnak, M; Perissin, D; Sousa, JJ;
Publication
REMOTE SENSING
Abstract
Synthetic aperture radar (SAR) technology has emerged as a pivotal tool in viticulture, offering unique capabilities for various applications. This study provides a comprehensive overview of the current state-of-the-art applications of SAR in viticulture, highlighting its significance in addressing key challenges and enhancing viticultural practices. The historical evolution and motivations behind SAR technology are also provided, along with a demonstration of its applications within viticulture, showcasing its effectiveness in various aspects of vineyard management, including delineating vineyard boundaries, assessing grapevine health, and optimizing irrigation strategies. Furthermore, future perspectives and trends in SAR applications in viticulture are discussed, including advancements in SAR technology, integration with other remote sensing techniques, and the potential for enhanced data analytics and decision support systems. Through this article, a comprehensive understanding of the role of SAR in viticulture is provided, along with inspiration for future research endeavors in this rapidly evolving field, contributing to the sustainable development and optimization of vineyard management practices.
2024
Authors
López, A; Ogayar, CJ; Feito, FR; Sousa, JJ;
Publication
REMOTE SENSING
Abstract
Classifying grapevine varieties is crucial in precision viticulture, as it allows for accurate estimation of vineyard row growth for different varieties and ensures authenticity in the wine industry. This task can be performed with time-consuming destructive methods, including data collection and analysis in the laboratory. In contrast, unmanned aerial vehicles (UAVs) offer a markedly more efficient and less restrictive method for gathering hyperspectral data, even though they may yield data with higher levels of noise. Therefore, the first task is the processing of these data to correct and downsample large amounts of data. In addition, the hyperspectral signatures of grape varieties are very similar. In this study, we propose the use of a convolutional neural network (CNN) to classify seventeen different varieties of red and white grape cultivars. Instead of classifying individual samples, our approach involves processing samples alongside their surrounding neighborhood for enhanced accuracy. The extraction of spatial and spectral features is addressed with (1) a spatial attention layer and (2) inception blocks. The pipeline goes from data preparation to dataset elaboration, finishing with the training phase. The fitted model is evaluated in terms of response time, accuracy and data separability and is compared with other state-of-the-art CNNs for classifying hyperspectral data. Our network was proven to be much more lightweight by using a limited number of input bands (40) and a reduced number of trainable weights (560 k parameters). Hence, it reduced training time (1 h on average) over the collected hyperspectral dataset. In contrast, other state-of-the-art research requires large networks with several million parameters that require hours to be trained. Despite this, the evaluated metrics showed much better results for our network (approximately 99% overall accuracy), in comparison with previous works barely achieving 81% OA over UAV imagery. This notable OA was similarly observed over satellite data. These results demonstrate the efficiency and robustness of our proposed method across different hyperspectral data sources.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.