2024
Authors
Carneiro, GA; Cunha, A; Aubry, TJ; Sousa, J;
Publication
AGRIENGINEERING
Abstract
The Eurasian grapevine (Vitis vinifera L.) is one of the most extensively cultivated horticultural crop worldwide, with significant economic relevance, particularly in wine production. Accurate grapevine variety identification is essential for ensuring product authenticity, quality control, and regulatory compliance. Traditional identification methods have inherent limitations limitations; ampelography is subjective and dependent on skilled experts, while molecular analysis is costly and time-consuming. To address these challenges, recent research has focused on applying deep learning (DL) and machine learning (ML) techniques for grapevine variety identification. This study systematically analyses 37 recent studies that employed DL and ML models for this purpose. The objective is to provide a detailed analysis of classification pipelines, highlighting the strengths and limitations of each approach. Most studies use DL models trained on leaf images captured in controlled environments at distances of up to 1.2 m. However, these studies often fail to address practical challenges, such as the inclusion of a broader range of grapevine varieties, using data directly acquired in the vineyards, and the evaluation of models under adverse conditions. This review also suggests potential directions for advancing research in this field.
2025
Authors
Ferreira, L; Bias, ED; Barros, QS; Pádua, L; Matricardi, EAT; Sousa, JJ;
Publication
FORESTS
Abstract
Reduced-impact logging (RIL) has been recognized as a promising strategy for biodiversity conservation and carbon sequestration within sustainable forest management (SFM) areas. However, monitoring the forest understory-a critical area for assessing logging impacts-remains challenging due to limitations in conventional methods such as field inventories and global navigation satellite system (GNSS) surveys, which are time-consuming, costly, and often lack accuracy in complex environments. Additionally, aerial and satellite imagery frequently underestimate the full extent of disturbances as the forest canopy obscures understory impacts. This study examines the effectiveness of the relative density model (RDM), derived from airborne LiDAR data, for mapping and monitoring understory disturbances. A field-based validation of LiDAR-derived RDM was conducted across 25 sites, totaling 5504.5 hectares within the Jamari National Forest, Rond & ocirc;nia, Brazil. The results indicate that the RDM accurately delineates disturbances caused by logging infrastructure, with over 90% agreement with GNSS field data. However, the model showed the greatest discrepancy for skid trails, which, despite their lower accuracy in modeling, accounted for the largest proportion of the total impacted area among infrastructure. The findings include the mapping of 35.1 km of primary roads, 117.4 km of secondary roads, 595.6 km of skid trails, and 323 log landings, with skid trails comprising the largest proportion of area occupied by logging infrastructure. It is recommended that airborne LiDAR assessments be conducted up to two years post-logging, as impacts become less detectable over time. This study highlights LiDAR data as a reliable alternative to traditional monitoring approaches, with the ability to detect understory impacts more comprehensively for monitoring selective logging in SFM areas of the Amazon, providing a valuable tool for both conservation and climate mitigation efforts.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.