Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Susana Alexandra Barbosa

2021

Variability of the atmospheric electric field in the South Atlantic marine boundary layer from the SAIL campaign

Authors
Barbosa, S; Camilo, M; Almeida, C; Amaral, G; Dias, N; Ferreira, A; Silva, E;

Publication

Abstract
<p>The marine boundary layer offers a unique opportunity to investigate the electrical properties of the atmosphere, as the effect of natural radioactivity in driving near surface ionization is significantly reduced over the ocean, and the concentration of aerosols is also typically lower than over land. This work addresses the temporal variability of the atmospheric electric field in the South Atlantic marine boundary layer based on measurements from the SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer) project. The SAIL monitoring campaign took place on board the Portuguese navy tall ship NRP Sagres during its circumnavigation expedition in 2020.  Two identical field mills (CS110, Campbell Scientific) were installed on the same mast but at different heights (about 5 and 22 meters), recording the atmospheric electric field every 1-second. Hourly averages of the atmospheric electric field are analyzed for the ship’s leg from 3<sup>rd</sup> to 25<sup>th</sup> March, between Buenos Aires (South America) and Cape Town (South Africa). The median daily curve of the electric field has a shape compatible with the Carnegie curve, but significant variability is found in the daily pattern of individual days, with only about 30% of the days exhibiting a diurnal pattern consistent with the Carnegie curve.</p>

2020

The connection of atmospheric new particle formation to fair-weather Earth-atmosphere electric field

Authors
Chen, X; Barbosa, S; Mäkelä, A; Paatero, J; Monteiro, C; Guimarães, D; Junninen, H; Petäjä, T; Kulmala, M;

Publication

Abstract
<p>Atmospheric new particle formation (NPF) generates secondary aerosol particles into the lower atmosphere via gas-to-particle phase transition. Secondary aerosol particles dominate the total particle number concentration and are an important source for cloud condensation nuclei <sup>[1]</sup>. NPF typically begins with clustering among gaseous molecules. Once the newly formed clusters attain a size larger than the critical cluster size (~1.5 nm), their growth to larger sizes is energetically favoured and eventually they become nanoparticles <sup>[2]</sup>. NPF is often observed with the participation of air ions <sup>[3]</sup> and sometimes is induced by ions <sup>[4]</sup>. Air ions are a constituent of atmospheric electricity. The presence of the Earth-atmosphere electric field poses an electrical force on air ions. The earth-atmosphere electric field exhibits variability at different time scales under fair-weather conditions <sup>[5]</sup>. It is therefore interesting to understand whether the Earth-atmosphere electric field influences atmospheric new particle formation.</p> <p>We analysed the Earth-atmosphere electric field together with the number size distribution data of air ions and aerosol particles under fair-weather conditions measured at Hyytiälä SMEAR II station in Southern Finland <sup>[6]</sup>. The electric field were measured by two Campbell CS 110 field mills in parallel. Air ion data were obtained with a Balance Scanning Mobility Analyser (BSMA) and a Neutral and Air Ion Spectrometer (NAIS), and aerosol particle data with a Differential Mobility Particle Sizer (DMPS). We used condensation Sinks (CS) derived from the DMPS measurement, air temperature, relative humidity, wind speed, global radiation as well as brightness derived from the global radiation measurement to assist the analysis. The measured earth-atmosphere electric field on NPF days was higher than on non-NPF days. We found that under low CS conditions, the electric field can enhance the formation of 1.7-3 nm air ions, but the concentration of 1.7-3 nm ions decreased with an increasing electric field under high CS conditions.</p> <p>References:</p> <p>[1]       Kerminen V.-M. et al., Environ. Res. Lett. <strong>2018</strong>, 13, 103003.</p> <p>[2]       Kulmala M. et al., Science <strong>2013</strong>, 339, 943-946.</p> <p>[3]       Manninen H. E. et al., Atmos. Chem. Phys. <strong>2010</strong>, 10, 7907-7927.</p> <p>[4]       Jokinen T. et al., Science Advances <strong>2018</strong>, 4, eaat9744.</p> <p>[5]       Bennett A. J., Harrison R. G., Journal of Physics: Conference Series <strong>2008</strong>, 142, 012046.</p> <p>[6]       Hari P., Kulmala M., Boreal Environ. Res. <strong>2005</strong>, 10, 315-322.</p>

2020

Data quality in different paleo archives and covering different time scales: a key issue in studying tipping elements.

Authors
Rousseau, D; Barbosa, S; Bagniewski, W; Boers, N; Cook, E; Fohlmeister, J; Goswami, B; Marwan, N; Rasmussen, SO; Sime, L; Svensson, A;

Publication

Abstract
<p>Although the Earth system is described to react relatively abruptly to present anthropogenic forcings, the notion of abruptness remains questionable as it refers to a time scale that is difficult to constrain properly. Recognizing this issue, the tipping elements as listed in Lenton et al. (2008) rely on long-term observations under controlled conditions, which enabled the associated tipping points to be identified. For example, there is evidence nowadays that if the rate of deforestation from forest fires and the climate change does not decrease, the Amazonian forest will reach a tipping point towards savanna (Nobre, 2019), which would impact the regional and global climate systems as well as various other ecosystems, directly or indirectly (Magalhães et al., 2020). However, if the present tipping elements, which are now evidenced, are mostly related to the present climate change and thus directly or indirectly related to anthropogenic forcing, their interpretation must still rely on former cases detected in the past, and especially from studies of abrupt climatic transitions evidenced in paleoclimate proxy records. Moreover, recent studies of past changes have shown that addressing abrupt transitions in the past raises the issue of data quality of individual records, including the precision of the time scale and the quantification of associated uncertainties. Investigating past abrupt transitions and the mechanisms involved requires the best data quality possible. This can be a serious limitation when considering the sparse spatial coverage of high resolution paleo-records where dating is critical and corresponding errors often challenging to control. In theory, this would therefore almost limit our investigations to ice-core records of the last climate cycle, because they offer the best possible time resolution. However, evidence shows that abrupt transitions can also be identified in deeper time with lower resolution records, but still revealing changes or transitions that have impacted the dynamics of the Earth system globally. TiPES Work Package 1 will address these issues and collect paleorecords permitting to evidence the temporal behavior of tipping elements in past climates, including several examples.</p> <p>Lenton T. et al. (2008). PNAS 105, 1786-1793.</p> <p>Nobre C. (2019). Nature 574, 455.</p> <p>Magalhães N.d. et al. (2020). Sci. Rep. 16914 (2019) doi:10.1038/s41598-019-53284-1</p> <p>This work is performed under the TiPES project funded by the European Union’s Horizon 2020 research and innovation program under grant agreement # 820970 <https://tipes.sites.ku.dk/></p>

2019

Reply to AMT-2019-378-AC3-supplement

Authors
Barbosa, S;

Publication

Abstract

2019

Interactive comment on “Inter-comparison study of atmospheric 222 Rn and 222 Rn progeny monitors” by Grossi et al

Authors
Barbosa, S;

Publication

Abstract

2023

Temporal variability of gamma radiation and aerosol concentration over the North Atlantic ocean

Authors
Dias, N; Amaral, G; Almeida, C; Ferreira, A; Camilo, A; Silva, E; Barbosa, S;

Publication

Abstract
<p>Gamma radiation measured over the ocean is mainly due to airborne radionuclides, as gamma emission by radon degassing from the ocean is negligible. Airborne gamma-emitting elements include radon progeny (Pb-2114, Bi-214, Pb-210) and cosmogenic radionuclides such as Be-7. Radon progeny attaches readily to aerosols, thus the fate of gamma-emitting radon progeny, after its formation by radioactive decay from radon, is expected to be closely linked to that of aerosols.</p> <p>Gamma radiation measurements over the Atlantic Ocean were made on board the ship-rigged sailing ship NRP Sagres in the framework of project SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer). The measurements were performed continuously with a NaI(Tl) scintillator counting all gamma rays from 475 keV to 3 MeV.  </p> <p>The counts from the sensor were recorded every 1 second into a computer system which had his time reference corrected by a GNSS pulse per second (PPS) signal. The GNSS was also used to precisely position the ship. The measurements were performed over the Atlantic ocean from January to May 2020, along the ship’s round trip from Lisboa - Cape Verde – Rio de Janeiro – Buenos Aires – Cape Town – Cape Verde - Lisboa.</p> <p>The results show that the gamma radiation time series displays considerable higher counts and larger variability in January compared to the remaining period. Reanalysis data also indicate higher aerosol concentration. This work investigates in detail the association between the temporal evolution of the gamma radiation measurements obtained from the SAIL campaign over the Atlantic Ocean and co-located total aerosol concentration at 550 nm obtained every 3 hours from EAC4(ECMWF Atmospheric Composition Reanalysis 4) data.</p>

  • 13
  • 14