Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Shazia Tabassum

2020

Interconnect bypass fraud detection: a case study

Authors
Veloso, B; Tabassum, S; Martins, C; Espanha, R; Azevedo, R; Gama, J;

Publication
ANNALS OF TELECOMMUNICATIONS

Abstract
The high asymmetry of international termination rates is fertile ground for the appearance of fraud in telecom companies. International calls have higher values when compared with national ones, which raises the attention of fraudsters. In this paper, we present a solution for a real problem called interconnect bypass fraud, more specifically, a newly identified distributed pattern that crosses different countries and keeps fraudsters from being tracked by almost all fraud detection techniques. This problem is one of the most expressive in the telecommunication domain, and it has some abnormal behaviours like the occurrence of a burst of calls from specific numbers. Based on this assumption, we propose the adoption of a new fast forgetting technique that works together with the Lossy Counting algorithm. We apply frequent set mining to capture distributed patterns from different countries. Our goal is to detect as soon as possible items with abnormal behaviours, e.g., bursts of calls, repetitions, mirrors, distributed behaviours and a small number of calls spread by a vast set of destination numbers. The results show that the application of different techniques improves the detection ratio and not only complements the techniques used by the telecom company but also improves the performance of the Lossy Counting algorithm in terms of run-time, memory used and sensibility to detect the abnormal behaviours. Additionally, the application of frequent set mining allows us to capture distributed fraud patterns.

2020

Profiling high leverage points for detecting anomalous users in telecom data networks

Authors
Tabassum, S; Azad, MA; Gama, J;

Publication
ANNALS OF TELECOMMUNICATIONS

Abstract
Fraud in telephony incurs huge revenue losses and causes a menace to both the service providers and legitimate users. This problem is growing alongside augmenting technologies. Yet, the works in this area are hindered by the availability of data and confidentiality of approaches. In this work, we deal with the problem of detecting different types of unsolicited users from spammers to fraudsters in a massive phone call network. Most of the malicious users in telecommunications have some of the characteristics in common. These characteristics can be defined by a set of features whose values are uncommon for normal users. We made use of graph-based metrics to detect profiles that are significantly far from the common user profiles in a real data log with millions of users. To achieve this, we looked for the high leverage points in the 99.99th percentile, which identified a substantial number of users as extreme anomalous points. Furthermore, clustering these points helped distinguish malicious users efficiently and minimized the problem space significantly. Convincingly, the learned profiles of these detected users coincided with fraudulent behaviors.

2023

Social network analytics and visualization: Dynamic topic-based influence analysis in evolving micro-blogs

Authors
Tabassum, S; Gama, J; Azevedo, PJ; Cordeiro, M; Martins, C; Martins, A;

Publication
EXPERT SYSTEMS

Abstract
Influence Analysis is one of the well-known areas of Social Network Analysis. However, discovering influencers from micro-blog networks based on topics has gained recent popularity due to its specificity. Besides, these data networks are massive, continuous and evolving. Therefore, to address the above challenges we propose a dynamic framework for topic modelling and identifying influencers in the same process. It incorporates dynamic sampling, community detection and network statistics over graph data stream from a social media activity management application. Further, we compare the graph measures against each other empirically and observe that there is no evidence of correlation between the sets of users having large number of friends and the users whose posts achieve high acceptance (i.e., highly liked, commented and shared posts). Therefore, we propose a novel approach that incorporates a user's reachability and also acceptability by other users. Consequently, we improve on graph metrics by including a dynamic acceptance score (integrating content quality with network structure) for ranking influencers in micro-blogs. Additionally, we analysed the topic clusters' structure and quality with empirical experiments and visualization.

  • 3
  • 3