Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Tiago André Santos

2019

Real-Time LiDAR-based Power Lines Detection for Unmanned Aerial Vehicles

Authors
Azevedo, F; Dias, A; Almeida, J; Oliveira, A; Ferreira, A; Santos, T; Martins, A; Silva, E;

Publication
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)

Abstract
The growing dependence of modern-day societies on electricity increases the importance of effective monitoring and maintenance of power lines. Endowing UAVs with the appropriate sensors for inspecting power lines, the costs and risks associated with the traditional foot patrol and helicopter-based inspections can be reduced. However, this implies the development of algorithms to make the inspection process reliable and autonomous. Visual methods are usually applied to locate the power lines and their components, but poor light conditions or a background rich in edges may compromise their results. To overcome those limitations, we propose to address the problem of power line detection and modeling based on LiDAR. A novel approach to the power line detection was developed, the PL2DM -Power Line LiDAR-based Detection and Modeling. It is based in a scan-by-scan adaptive neighbor minimalist comparison for all the points in a point cloud. The power line final model is obtained by matching and grouping several line segments, using their collinearity properties. Horizontally, the power lines are modeled as a straight line, and vertically as a catenary curve. The algorithm was validated with a real dataset, showing promising results both in terms of outputs and processing time, adding real-time object-based perception capabilities for other layers of processing.

2020

3d reconstruction of historical sites using an uav

Authors
Silva, P; Dias, A; Pires, A; Santos, T; Amaral, A; Rodrigues, P; Almeida, J; Silva, E;

Publication
Robots in Human Life- Proceedings of the 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2020

Abstract
This paper addresses Three-Dimensional (3D) reconstruction of historical sites with an Unmanned Aerial Vehicle (UAV), combining the information from a visible spectrum camera with a Light Detection and Ranging (LiDAR). The developed solution was validated in two sites located in Monastery of Tibães (Braga, NW Portugal), within the scope of MineHeritage project, which intends to reach society on the importance of raw materials through a historical approach. The outputs obtained from the datasets, resulted in a successfully 3D reconstruction of the two studied sites on the Monastery. Although the research is still ongoing on this topic, this paper is a starting point and an important contribution to this field and this type of scenarios. © CLAWAR Association Ltd.

2019

Design and Development of a multi rotor UAV for Oil Spill Mitigation

Authors
Oliveira, A; Pedrosa, D; Santos, T; Dias, A; Amaral, G; Martins, A; Almeida, J; Silva, E;

Publication
OCEANS 2019 - MARSEILLE

Abstract
Over the last few years, oil spill incidents occured with some regularity during exploration, production and transportation, causing a large economic and ecologic impact in the world community. To minimise these impacts and reduce the time response of the initial mitigation process, autonomous vehicles, such as unmanned aerial vehicles (UAV) can be used to perform oil spill monitoring and mitigation. This paper presents the design and implementation of a multirotor UAV capable of identifying and combat the oil spill, by using a release system of consortia with bacteria and nutrients. Several field tests occurred in Portugal and Spain, where the oil spill was implemented in a simulated environment, resulting in a cooperative and simultaneous manoeuvre between the vehicles.

2019

ROSM - Robotic Oil Spill Mitigation

Authors
Dias, A; Mucha, AP; Santos, T; Pedrosa, D; Amaral, G; Ferreira, H; Oliveira, A; Martins, A; Almeida, J; Almeida, CM; Ramos, S; Magalhaes, C; Carvalho, MF; Silva, E;

Publication
OCEANS 2019 - MARSEILLE

Abstract
The overall aim of the ROSM project is the implementation of an innovative solution based on heterogeneous autonomous vehicles to tackle maritime pollution (in particular, oil spills). These solutions will be based on native microbial consortia with bioremediation capacity, and the adaptation of air and surface autonomous vehicles for in-situ release of autochthonous microorganisms (bioaugmentation) and nutrients (biostimulation). By doing so, these systems can be used as the first line of the responder to pollution incidents from several origins that may occur inside ports, around industrial and extraction facilities, or during transport activities, in a fast, efficient and low-cost way. The paper will address the development of a team of autonomous vehicles able to carry, as payload, native organisms to naturally degrade oil spills (avoiding the introduction of additional chemical or biological additives), the development of a multi-robot system able to provide a first line responses to oil spill incidents under unfavourable and harsh conditions with low human intervention, and then a decentralized cooperative planning with the ability to coordinate an efficient oil spill combat. Field tests have been performed in Leixoes Harbour in Porto and Medas, Portugal, with a simulated oil spill and validated the decentralized coordinated task between the autonomous surface vehicle (ASV) ROAZ and the unmanned aerial vehicle (UAV).

2021

Hyperspectral Imaging System for Marine Litter Detection

Authors
Freitas, S; Silva, H; Almeida, C; Viegas, D; Amaral, A; Santos, T; Dias, A; Jorge, PAS; Pham, CK; Moutinho, J; Silva, E;

Publication
OCEANS 2021: SAN DIEGO - PORTO

Abstract
This work addresses the use of hyperspectral imaging systems for remote detection of marine litter concentrations in oceanic environments. The work consisted on mounting an off-the-shelf hyperspectral imaging system (400-2500 nm) in two aerial platforms: manned and unmanned, and performing data acquisition to develop AI methods capable of detecting marine litter concentrations at the water surface. We performed the campaigns at Porto Pim Bay, Fail Island, Azores, resorting to artificial targets built using marine litter samples. During this work, we also developed a Convolutional Neural Network (CNN-3D), using spatial and spectral information to evaluate deep learning methods to detect marine litter in an automated manner. Results show over 84% overall accuracy (OA) in the detection and classification of the different types of marine litter samples present in the artificial targets.

2022

Unmanned Aerial Vehicle for Wind-Turbine Inspection. Next Step: Offshore

Authors
Dias, A; Almeida, J; Oliveira, A; Santos, T; Martins, A; Silva, E;

Publication
2022 OCEANS HAMPTON ROADS

Abstract
Offshore wind turbine application has been widespread in the last years, with an estimation that in 2030 will reach a total capacity of 234GW. Offshore wind farms introduce advantages in terms of environmental impact (noise, impact on birds, disrupted landscapes) and energy production (34% onshore and 43% offshore). Still, they also introduce scientific challenges in developing methodologies that allow wind farm inspection (preventive maintenance) safety for humans. This paper presents a UAV approach for autonomous inspection of inland windturbine and describes the field tests in Penela, Portugal. From the state-of-the-art available wind turbine inspection, in 2015, we carried out the first autonomous inspection with a UAV. The inspection of wind blades offshore is an ongoing project; therefore, the paper also presents the preliminary results with a simulation environment to validate the 3D LiDAR and the inspection procedure with new challenges effects: floating platform, wind gusts, and unknown initial blade position.

  • 2
  • 3