2020
Authors
Rocha, C; Sousa, I; Ferreira, F; Sobreira, H; Lima, J; Veiga, G; Moreira, AP;
Publication
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 1
Abstract
Frequently carrying high loads and performing repetitive tasks compromises the ergonomics of individuals, a recurrent scenario in hospital environments. In this paper, we design a logistic planner of a fleet of autonomous mobile robots for the automation of transporting trolleys around the hospital, which is independent of the space configuration, and robust to loss of network and deadlocks. Our robotic solution has an innovative gripping system capable of grasping and pulling non-modified standard trolleys just by coupling a plate. Robots are able to navigate autonomously, to avoid obstacles assuring the safety of operators, to identify and dock a trolley, to access charging stations and elevators, and to communicate with the latter. An interface was built allowing users to command the robots through a web server. It is shown how the proposed methodology behaves in experiments conducted at the Faculty of Engineering of the University of Porto and Braga's Hospital.
2021
Authors
Braun J.; Lima J.; Pereira A.I.; Rocha C.; Costa P.;
Publication
Communications in Computer and Information Science
Abstract
The recent growth in the use of 3D printers by independent users has contributed to a rise in interest in 3D scanners. Current 3D scanning solutions are commonly expensive due to the inherent complexity of the process. A previously proposed low-cost scanner disregarded uncertainties intrinsic to the system, associated with the measurements, such as angles and offsets. This work considers an approach to estimate these optimal values that minimize the error during the acquisition. The Particle Swarm Optimization algorithm was used to obtain the parameters to optimally fit the final point cloud to the surfaces. Three tests were performed where the Particle Swarm Optimization successfully converged to zero, generating the optimal parameters, validating the proposed methodology.
2021
Authors
Lima, J; Rocha, L; Rocha, C; Costa, P;
Publication
IAES International Journal of Robotics and Automation (IJRA)
Abstract
2021
Authors
Braun, J; Lima, J; Pereira, AI; Rocha, C; Costa, P;
Publication
2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA)
Abstract
Nowadays, with the availability of 3D printers, the scanners for objects are becoming increasingly present since they allow to replicate objects by 3D printing, especially for small scale sizes. However, the majority of these technologies are expensive, due to the complexity of this task. Therefore, this work presents a prototype of a low-cost 3D scanning system for small objects using a point cloud to stereolithography approach where it was already validated in simulation in previous work. This concept has a restriction that the objects must have a uniform shape, i.e, without discontinuities. The architecture is composed of two stepper motors, due to their precision, a rotating plate to allow 360 degrees scans and another rotating structure that allows the infrared distance sensor to scan the object from bottom to top (90 degrees). The prototype was validated in the real scenario with good results.
2022
Authors
Rocha, C; Dias, J; Moreira, AP; Veiga, G; Costa, P;
Publication
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
Abstract
Nowadays, a laboratory operator in the areas of chemistry, biology or medicine spends considerable time performing micropipetting procedures, a common, monotonous and repetitive task which compromises the ergonomics of individuals, namely related to wrist musculoskeletal disorders. In this work, the design of a kinesthetic teaching approach for automating the micropipetting technique is presented, allowing to redirect the operator to other non-repetitive tasks, aiming to reduce the exposure to ergonomic risks. The proposed robotic solution has an innovative gripping system capable of supporting, actuating and regulating the volume of a manual micropipette. The system is able to configure the position of diverse laboratory materials, such as lab containers and plates, on the workbench through a collaborative robotic arm, providing flexibility to adapt to different procedures. A projected human-machine interface, which combines the display of information on the workbench with an infrared based interaction device was developed, providing a more intuitive interaction between the operator and the system during the configuration and operation phases. In contrast to the majority of the existing liquid handling systems, the proposed system allows the operator to place the materials freely on the workbench and the usage of different materials' variants, facilitating the implementation of the system in any laboratory. The attained performance and ease of use of the system were very encouraging since all the defined tasks in the conducted experiments were successfully performed by users with minimum training, highlighting its potential inclusion in the laboratory routine panorama.
2022
Authors
Sousa, RB; Rocha, C; Mendonca, HS; Moreira, AP; Silva, MF;
Publication
IEEE ACCESS
Abstract
The technological market is increasingly evolving as evidenced by the innovative and streamlined manufacturing processes. Printed Circuit Boards (PCB) are widely employed in the electronics fabrication industry, resorting to the Gerber open standard format to transfer the manufacturing data. The Gerber format describes not only metadata related to the manufacturing process but also the PCB image. To be able to map the electronic circuit pattern to be printed, a parser to convert Gerber files into a bitmap image is required. The current literature as well as available Gerber viewers and libraries showed limitations mainly in the Gerber format support, focusing only on a subset of commands. In this work, the development of a recursive descent approach for parsing Gerber files is described, outlining its interpretation and the renderization of 2D bitmap images. All the defined commands in the specification based on Gerber X2 generation were successfully rendered, unlike the tested commercial parsers used in the experiments. Moreover, the obtained results were comparable to those parsers regarding the commands they can execute as well as the ground-truth, emphasizing the accuracy of the proposed approach. Its top-down and recursive architecture allows easy integration with other software regardless of the platform, highlighting its potential inclusion and integration in the production of electronic circuits.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.