Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Orlando Frazão

2014

Post-processing fibers for sensing applications

Authors
Frazao, O; Ferreira, MS; Andre, RM; Silva, SO; Marques, MB; Santos, JL;

Publication
Optical Sensors, 2014

Abstract
A review in fiber post-processing for sensing applications is presented. The review is divided in three parts. Tapers devices, chemical etching for Fabry-Perot cavities and focused ion beam (FIB) as post-processing applied in optical fibers are considered. The most recent results as sensing elements are shown. © 2014 OSA.

2013

Post-Processing of Fabry-Perot Microcavity Tip Sensor

Authors
Ferreira, MS; Bierlich, J; Unger, S; Schuster, K; Santos, JL; Frazao, O;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
A Fabry-Perot microcavity tip sensor fabricated by post-processing of a special design double-cladding optical fiber is proposed. The produced fiber has a pure silica core, an outer cladding, and an inner silica cladding surrounding the core doped with phosphorous. When subjected to chemical etching post-processing, the whole ring region is removed and light is guided in the core region. The sensing head is created by splicing this fiber to single mode fiber and applying chemical etching to the fiber end. The core is forming a tip and it is thus surrounded by air. The Fabry-Perot microcavity tip sensor is subjected to temperature, and a sensitivity of 15.5 pm/degrees C is obtained.

2014

Refractive index measurement of liquids based on microstructured optical fibers

Authors
Silva, S; Roriz, P; Frazão, O;

Publication
Photonics

Abstract
This review is focused on microstructured optical fiber sensors developed in recent years for liquid RI sensing. The review is divided into three parts: the first section introduces a general view of the most relevant refractometric sensors that have been reported over the last thirty years. Section 2 discusses several microstructured optical fiber designs, namely, suspended-core fiber, photonic crystal fiber, large-core air-clad photonic crystal fiber, and others. This part is also divided into two main groups: the interferometric-based and resonance-based configurations. The sensing methods rely either on full/selective filling of the microstructured fiber air holes with a liquid analyte or by simply immersing the sensing fiber into the liquid analyte. The sensitivities and resolutions are tabled at the end of this section followed by a brief discussion of the obtained results. The last section concludes with some remarks about the microstructured fiber-based configurations developed for RI sensing and their potential for future applications. © 2014 by the authors.

2014

Remote curvature fiber sensors using core mismatch structures and OTDR based interrogation

Authors
Fernandes, CS; Rocco Giraldi, MTMR; Gouveia, CJ; Sousa, MJ; Costa, JCWA; Frazao, O; Jorge, PAS;

Publication
SECOND INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
In this work, a remote curvature sensor using a standard OTDR as the interrogation system is presented. This approach uses a core diameter mismatch sensor which is formed by a short section of a multimode fiber, with a length of 3 mm, sandwiched between two singlemode fibers. In this case, the attenuation of the optical signal will vary as the fiber is bent allowing interrogating the sensor with OTDR technology. Preliminary results indicate a resolution range of similar to 0.0003 cm(-1), sensitivity in the range of similar to-208.46 dB/cm(-1) and a variation of 2.67 dB in the OTDR trace within the bend radius range.

2013

Review of fiber-optic pressure sensors for biomedical and biomechanical applications

Authors
Roriz, P; Frazao, O; Lobo Ribeiro, AB; Santos, JL; Simoes, JA;

Publication
JOURNAL OF BIOMEDICAL OPTICS

Abstract
As optical fibers revolutionize the way data is carried in telecommunications, the same is happening in the world of sensing. Fiber-optic sensors (FOS) rely on the principle of changing the properties of light that propagate in the fiber due to the effect of a specific physical or chemical parameter. We demonstrate the potentialities of this sensing concept to assess pressure in biomedical and biomechanical applications. FOSs are introduced after an overview of conventional sensors that are being used in the field. Pointing out their limitations, particularly as minimally invasive sensors, is also the starting point to argue FOSs are an alternative or a substitution technology. Even so, this technology will be more or less effective depending on the efforts to present more affordable turnkey solutions and peer-reviewed papers reporting in vivo experiments and clinical trials. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.18.5.050903]

2013

Strain-Temperature Discrimination Using Multimode Interference in Tapered Fiber

Authors
Andre, RM; Biazoli, CR; Silva, SO; Marques, MB; Cordeiro, CMB; Frazao, O;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
Tapering single-mode-multimode-single-mode structures to enhance sensitivity is proposed and experimentally demonstrated. 50-mm-long coreless multimode fiber sections are spliced between single-mode fibers (SMFs) and tapered. They are characterized in strain, and an increase in strain sensitivity is obtained with taper diameter reduction. Sensitivities as high as -23.69 pm/mu epsilon for the 15-mu m taper are attained. Temperature sensitivities also depend on taper diameter. A combination of two different diameter tapered SMF MMF-SMF structures, with cross-sensitivity to strain and temperature, is proposed as a sensing system for the simultaneous measurement of strain and temperature with resolutions of +/-5.6 mu epsilon and +/-1.6 degrees C, respectively. A good condition number of 3.16 is achieved with this sensing structure.

  • 12
  • 90