Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Orlando Frazão

2016

Cavity ring-down technique for remote sensing A proof-of-concept for displacement measurement

Authors
Silva, S; Marques, MB; Frazao, O;

Publication
SIXTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS

Abstract
This work demonstrates the viability of using a cavity ring-down technique (CRD) for remote sensing. A conventional CRD configuration is used where and optical circulator is added inside the fibre loop to couple 20 km of optical fibre with a gold mirror at its end with the purpose of remote sensing. As a proof-of-concept, an intensity sensor based on an eight-figure configuration is used at the end of the 20 km of fibre for displacement sensing. In this case, a commercial OTDR is used as modulated light source to send impulses down to the fibre ring.

2015

Centre of mass determination based on an optical weighing machine using fiber Bragg gratings

Authors
Oliveira, R; Roriz, P; Marques, MB; Frazao, O;

Publication
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
The purpose of the present work was to construct a weighing machine based on fiber Bragg gratings (FBGs) for the location of the 2D coordinates of the center of gravity (COG) of objects with complex geometry and density distribution. The apparatus consisted of a rigid equilateral triangular platform mounted on three supports at its vertices, two of them having cantilevers instrumented with FBGs. As an example, two femur bone models, one with and one without a hip stem prosthesis, are used to discuss the changing of the COM caused by the implementation of the prosthesis.

2015

CHIRPED FIBER BRAGG GRATING CAVITY RING-DOWN FOR STRAIN SENSING USING AN OTDR

Authors
Silva, S; Passos, DJ; Marques, MB; Frazao, O;

Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
This work presents a fiber cavity ring down (CRD) configuration for the measurement of strain. An optical time-domain reflectometer (OTDR) was used to send impulses down into the fiber loop cavity, inside of which a chirped fiber Bragg grating was placed to act as a strain sensing element. This technique could provide strain results with both conventional CRD-based configuration and the OTDR. The CRD configuration provided a linear response to strain applied in the range 0-2000 epsilon, and a sensitivity of 1.34 ns/epsilon was obtained. For the same operation range, the OTDR interrogation allowed obtaining a periodic behavior due to fiber Bragg grating scanning of the wavelength peaks of the multimode laser source while increasing strain. It is shown that the OTDR interrogation method provide a ring-down time response of about 8 s which is a great improvement when compared to the conventional CRD configuration (23 s). (c) 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1442-1444, 2015

2015

Curvature sensing using an added-signal in a fiber-optic cavity ring-down system

Authors
Silva, SO; Biswas, P; Bandyopadhyay, S; Jorge, PA; Marques, MB; Frazao, O;

Publication
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
This work presents a fiber-optic Cavity Ring-Down (CRD) configuration using an added-signal for curvature sensing. An Optical Time-Domain Reflectometer (OTDR) was used to send impulses down into the fiber loop cavity, inside of which a long period grating (LPG) was placed to act as sensing device. The added-signal was obtained by the sum of several conventional CRD impulses, thus providing an improvement on the curvature sensitivity when compared to the conventional CRD signal processing. Sensitivity to applied curvature of 15.3 mu s/m(-1) was obtained. This result was found to be 20-fold the one obtained for the conventional CRD signal processing.

2015

Evaluation of the performance of orthodontic devices using FBG sensors

Authors
Carvalho, L; Roriz, P; Frazao, O; Marques, MB;

Publication
23RD CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS (ICO 23)

Abstract
Cross-bite, as a malocclusion effect, is defined as a transversal changing of the upper dental arch, in relation to the lower arch, and may be classified as skeletal, dental or functional. As a consequence, the expansion of maxilla is an effective clinical treatment used to correct transversal maxillary discrepancy. The maxillary expansion is an ancient method used in orthodontics, for the correction of the maxillary athresia with posterior crossbite, through the opening of the midpalatal suture (disjunction), using orthodontic-orthopaedic devices. Same controversial discussion arises among the clinicians, about the effects of each orthodontic devices as also about the technique to be employed. The objective of this study was to compare the strain field induced by two different orthodontic devices, named disjunctor with and without a connecting bar, in an acrylic model jaw, using fiber Bragg grating sensors to measure the strain patterns. The orthodontic device disjunctor with the bar, in general, transmits higher forces and strain to teeth and maxillae, than with the disjunctor without bar. It was verified that the strain patterns were not symmetric between the left and the right sides as also between the posterior and anterior regions of the maxillae. For the two devices is also found that in addition a displacement in the horizontal plane, particularly in posterior teeth, also occurs a rotation corresponding to a vestibularization of the posterior teeth and their alveolar processes.

2015

Fabry-Perot cavity based on silica tube for strain sensing at high temperatures

Authors
Ferreira, MS; Roriz, P; Bierlich, J; Kobelke, J; Wondraczek, K; Aichele, C; Schuster, K; Santos, JL; Frazao, O;

Publication
OPTICS EXPRESS

Abstract
In this work, a Fabry-Perot cavity based on a new silica tube design is proposed. The tube presents a cladding with a thickness of similar to 14 mu m and a hollow core. The presence of four small rods, of similar to 20 mu m diameter each, placed in diametrically opposite positions ensure the mechanical stability of the tube. The cavity, formed by splicing a section of the silica tube between two sections of single mode fiber, is characterized in strain and temperature (from room temperature to 900 degrees C). When the sensor is exposed to high temperatures, there is a change in the response to strain. The influence of the thermal annealing is investigated in order to improve the sensing head performance. (C)2015 Optical Society of America

  • 2
  • 89