Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Orlando Frazão

2019

Multiplexing optical fiber Fabry-Perot interferometers based on air-microcavities

Authors
Perez Herrera, RA; Novais, S; Bravo, M; Leandro, D; Silva, SF; Frazao, O; Lopez Amo, M;

Publication
SEVENTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS (EWOFS 2019)

Abstract
In this work we demonstrate the multiplexing capability of new optical fiber Fabry-Perot interferometers based on air-microcavities using a commercial FBG interrogator. Three optimized air-microcavity interferometer sensors have been multiplexed in a single network and have been monitored using the commercial FBGs interrogator in combination with FFT calculations. Results show a sensitivity of 2.18 pi rad/m epsilon and a crosstalk-free operation.

2019

Fiber Microsphere Coupled in a Taper for a Large Curvature Range

Authors
Robalinho, P; Frazao, O;

Publication
FIBERS

Abstract
This work consists of using an optical fiber microsphere as a sensor for a wide range of curvature radii. The microsphere was manufactured in a standard fiber with an electric arc. In order to maximize system efficiency, the microsphere was spliced in the center of a taper. This work revealed that the variations of the wavelength where the maxima and minima of the spectrum are located varies linearly with the curvature of the system with a maximum sensitive of 580 +/- 20 (pm km). This is because the direction of the input beam in the microsphere depends on the system curvature, giving rise to interferometric variations within the microsphere.

2019

Graphene oxide as a tunable platform for microsphere-based optical fiber sensors

Authors
Monteiro, CS; Raposo, M; Ribeiro, P; Silva, S; Frazao, O;

Publication
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
Hollow microsphere fiber sensors are Fabry-Perot interferometers ( FPI) that can be used for lateral loading, temperature, and refractive index sensing. In this work, graphene oxide (GO) is explored as a tunable platform for enhancing the spectral properties of hollow microsphere fiber sensors. GO offers similar mechanical and optical properties as graphene, with the advantage of a wider range of deposition methods and a lower cost. The influence of multilayer coatings of polyethylenimine (PEI) and GO, achieved with the layer-by-layer technique, on the reflectivity of the outer surface, and hence, on the spectrum of the FPI for maximum of 30 bilayers was studied. The obtained results revealed a change of the microsphere outer surface reflectivity and also of visibility of the reflected spectrum when varying the number of bilayers. A maximum signal amplitude of 3.9 dB was attained for the 13th bilayer, allowing to conclude that PEI/GO multilayer coatings can be used for enhancing desired properties of the three-wave FPI for different sensing applications.

2019

Micro-Cantilever Displacement Detection Based in Optical Fiber Tip

Authors
Robalinho, P; Frazao, O;

Publication
SENSORS

Abstract
This work demonstrates the potential of combining a microsphere with a tip for the functionality of the contact sensor. This sensor consists of a tip aligned with the fiber core and a microsphere, which appears during tip formation. This new structure was produced using the electric arc machine. The sensor operation consists of the variation of the tip curvature, which causes a variation of the optical paths and, consequently, a change in the output signal. The study of this micro-cantilever consisted of an exploration of the contact mode. In addition, the sensor was characterized by temperature, which shows very low sensitivity and vibration. This last characterization was performed with two configurations parallel and perpendicular to the oscillating surface. The perpendicular case showed higher sensitivity and has an operating band of 0 Hz to 20 kHz. In this configuration, for frequencies up to 2 Hz, the intensity varies linearly with the frequencies and with a sensitivity of 0.032 +/- 0.001 (Hz(-1)). For the parallel case, the operating band was from 1.5 kHz to 7 kHz.

2019

Optical Fiber Probe Viscometer Based on Hollow Capillary Tube

Authors
Gomes, AD; Kobelke, J; Bierlich, J; Schuster, K; Bartelt, H; Frazao, O;

Publication
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
Viscosity measurements of a solution are crucial for many processes involving fluid flows. The current optical fiber viscometers are complex and, in some cases, provide indirect measurements of viscosity through other non-optical effects. We developed a miniaturized optical fiber probe capable of providing an optical interferometric measurement of the viscosity of small volumes of a liquid viscous medium (less than 50 pL). The probe consists of an air cavity with a small access hole for fluids, which resulted from a simple post-processing of a hollow capillary tube. The structure behaves as a two-wave interferometer, where the intensity of the signal is sensible to the position of the air-fluid interface inside the cavity. The fluid displacement over time is obtained by monitoring the signal intensity variations, at 1550 nm, during the process of removing the sensing head from a fluid solution. Multiple sucrose solutions with viscosities ranging from 2.01 to 16.1 mPa.s were used for calibration. The viscosity of the solution is measured through the fluid evacuation velocity in the first 300 ms of resolved oscillations during the evacuation process. Reproducibility measurements, the influence of temperature, and the access hole dimensions are also addressed. The application to biological fluids is important to be considered in future studies.

2019

Enhanced Temperature Sensing with Vernier Effect on Fiber Probe based on Multimode Fabry-Perot Interferometer

Authors
Gomes, AD; Becker, M; Dellith, J; Zibaii, MI; Latifi, H; Rothhardt, M; Bartelt, H; Frazao, O;

Publication
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
Sensing at small dimensions in biological and medical environments requires miniaturized sensors with high sensitivity and measurement resolution. In this work a small optical fiber probe was developed to apply the Vernier effect, allowing for enhanced temperature sensing. Such effect is an effective way of magnifying the sensitivity of a sensor or measurement system in order to reach higher resolutions. The device is a multimode silica Fabry-Perot interferometer structured at the edge of a tapered multimode fiber by focused ion beam milling. The Vernier effect is generated from the interference between different modes in the Fabry-Perot interferometer. The sensor was characterized in temperature, achieving a sensitivity of -654 pm/degrees C in a temperature range from 30 degrees C to 120 degrees C. The Vernier effect provided a temperature sensitivity over 60-fold higher than the sensitivity of a normal silica Fabry-Perot interferometer without the effect. The temperature resolution obtained was 0.14 degrees C, however this value was limited by the resolution of the OSA and can be improved further to less than 0.015 degrees C.

  • 26
  • 90