2003
Authors
Lima, MJN; Teixeira, ALJ; Frazao, O; Andre, PS; da Rocha, JRF;
Publication
PHOTONICS, DEVICES, AND SYSTEMS II
Abstract
In this contribution we compare the thermal stability of type I and type IIa gratings written in germanosilicate fibers. We study and compare their central wavelengths drifts and variations of the maximum reflectivity with temperature. Also, two other important factors, the bandwidth and group delay characteristics are characterized, compared, and the differences justified, based on the gratings physical structure.
2010
Authors
Silva, RM; Kobelke, J; Schuster, K; Frazao, O;
Publication
FOURTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
In this work, it is presented a Sagnac interferometric configuration based on a suspended twin-core fibre for sensing applications. Using the suspended twin-core fibre, the fringe pattern is due to the differential optical path of the light in the two cores associated with a refractive index difference of similar to 10(-3), which indicates an advantage of this approach compared with those based on Hi-Bi fibres, namely the possibility to use a small length of suspended twin-core fibre. The sensing configuration was characterized for torsion, temperature and strain. Using the Fast Fourier Transform technique it is possible to obtain the measurand induced amplitude variations of the fringe pattern. The results obtained indicate the viability of a temperature and strain independent torsion sensor.
2011
Authors
Silva, RM; Ferreira, MS; Frazao, O;
Publication
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
In this work, a simple real-static nanostrain sensor based on a Bragg grating structure is presented. The setup is constituted by a narrow linewidth laser as light source, an optical circulator and a photodetector. The sensing head is formed by a chirped Bragg grating inscribed in a standard single mode fiber (SMF-28) by the phase technique. The fiber face end is cleaved and coated with a silver mirror, obtaining a Fabry-Perot interferometer. It is observable that the fringes period increases along the grating, due to the chirp spectrum (0.4 nm/cm) characteristics. The laser is fixed in one slope region of the fringe pattern. When strain is applied, the optical power changes linearly. A sensitivity of 5.72 mu W/mu epsilon in a range of 2 mu epsilon. The sensing head resolution is 70 n epsilon for a measurement step of 875 n epsilon.
2011
Authors
Martins, HF; Marques, MB; Frazao, O;
Publication
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
A Brillouin Stokes comb laser with increased flatness is reported. The feedback for the laser is provided by a distributed mirror combined with a narrowband seed laser. The Brillouin seed power and wavelength optimization is crucial in order to obtain a uniform power level between Stokes lines. The Brillouin seed must have a relatively large power and its wavelength must be located close to the Raman peak gain region. The flat-amplitude bandwidth is also determined by the choice of Raman pump wavelength. A flat-amplitude bandwidth of 34 nm from 1538 nm to 1572 nm is measured when Raman pump wavelength is set to 1455 nm. 425 uniform Brillouin Stokes lines with 0.08 nm spacing are generated across the wavelength range. The average signal-to-noise ratio of 15 dB is obtained for all the Brillouin Stokes lines. This type of laser can be used in optical communications as a multiwavelength source and also in metrology as a frequency ruler.
2011
Authors
Ferreira, MS; Silva, RM; Frazao, O;
Publication
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
In this work, a high-birefringent Sagnac loop interferometer torsion sensor is presented. The sensing head is inserted between the output ports of a high-birefringent coupler and it is formed by a section of standard single mode fiber. The sensing head characterization is done for torsion, temperature and strain measurements. The spectral response of this sensing head presents two interferometers, which are dependent on the light polarization states. Interference occurs due to the different lengths of the coupler output arms. This configuration allows the exclusion of a polarization controller, since it is possible to manipulate directly the polarization of light that travels inside the coupler. When the sensing head is subjected to torsion, it is possible to observe a beat between the two interferometers. In this case, there is a simultaneous pi/4 excitation of the two polarization states in the splices region. The torsion sensitivity is related to the sensing head length. The sensor response is periodic and the twist range can be from -2 pi to 2 pi. The sensor is unaffected by temperature and strain variations. This configuration is simple and when compared to the conventional configuration, the polarization controller is suppressed. The setup can be used in specific applications, such as in mechanical engineering.
2009
Authors
Richter Trummer, V; Tavares, SMO; Peixoto, DFC; Silva, SF; Frazao, O; Moreira, PMGP; De Castro, PMST;
Publication
AES-ATEMA International Conference Series - Advances and Trends in Engineering Materials and their Applications
Abstract
Welding process monitoring using fibre Bragg grating (FBG) sensor technology is a promising technique to measure temperature and strain during the fabrication process. Examples of FBG sensor based temperature and strain measurements in butt-welding of plates are presented in this paper. In order to be able to measure strain and/or temperature it is however necessary to calibrate these instruments for accurate measurement results. In the present work calibration for strain measurements at constant temperature using a four point bending test is performed. This type of mechanical test allows enough space for instrumentation between the inner rollers. A finite element model is made using Abaqus for comparison and strain gauges are used for calibration purposes. Temperature calibration was carried out using an oven. The FBG sensors' measurements were calibrated with data obtained by thermocouples. Tests on welds are presented and the possible impact of this monitoring technology is briefly discussed in the light of process optimization and subsequent structural health monitoring. © AES-Advanced Engineering Solutions.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.