2006
Authors
Frazao, O; Ferreira, LA; Araujo, FM; Santos, JL; Guedes Valente, LC;
Publication
Optics InfoBase Conference Papers
Abstract
A fiber sensing system is presented that allows simultaneous measurement of both refractive index and temperature while providing passive referencing to intensity fluctuations. © 2006 OSA/OFS 2006.
2011
Authors
Ferreira, MS; Coelho, L; Schuster, K; Kobelke, J; Santos, JL; Frazao, O;
Publication
OPTICS LETTERS
Abstract
A Fabry-Perot (FP) cavity of simple design and based on a pure silica diaphragm-free hollow tube is proposed. Its operation is based on a first reflection of light at the end of the single-mode fiber that illuminates the silica rod and in a second reflection that takes place at the end of the rod. The FP cavity is characterized for high temperature, pressure and refractive index sensing, showing useful characteristics for the measurement of these three parameters. The diaphragm-free configuration simplifies the measurement of the refractive index of fluids. (C) 2011 Optical Society of America
2012
Authors
Silva, SF; Coelho, L; Frazao, O; Santos, JL; Xavier Malcata, FX;
Publication
IEEE SENSORS JOURNAL
Abstract
Palladium-based fiber-optic sensors have been one of the most promising configurations for hydrogen sensing. In the latest decade, fiber-optic sensors have indeed earned a strong interest owing to their ability to monitor molecular hydrogen at specific spatial points-either as a sensing tip device or in large areas via multiple sensing regions distributed along the optical fiber. This review focuses on the various types of optical fiber hydrogen sensors, containing specifically palladium as active element. Three distinct working principles are described, viz. interferometric-, intensity-, and fiber grating-based sensors; their characteristics and sensing performances are critically overviewed.
2012
Authors
Coelho, L; Tafulo, PAR; Jorge, PAS; Santos, JL; Viegas, D; Schuster, K; Kobelke, J; Frazao, O;
Publication
OPTICS LETTERS
Abstract
In this Letter, a hybrid interferometer for simultaneous measurement of the partial pressures of O-2 and CO2 mixtures is reported. The sensing head consists in the combination of two interferometric structures, one a Fabry-Perrot cavity and the other a modal interferometer. The intrinsic Fabry-Perot was formed by splicing a single mode fiber with a graded index fiber length that was then subjected to chemical etching creating an air cavity. The second interferometer is based on a splice of a pure silica tube in series with the Fabry-Perot. It was observed for a particular gas that its refractive index changes with pressure variation in a specific way, a characteristic that permitted the simultaneous measurement of partial pressures of CO2 and O-2 with rms deviations of similar to +/- 48.7 kPa and similar to +/- 20.1 kPa, respectively. (C) 2012 Optical Society of America
2008
Authors
Frazao, O; Baptista, JM; Santos, JL; Kobelke, J; Schuster, K;
Publication
ELECTRONICS LETTERS
Abstract
The study of the strain and temperature characteristics of a sensing head based on a four-hole suspended-core fibre in a Sagnac interferometric configuration is reported. It is shown that, for the case of using an uncoated suspended-core fibre, a relatively large strain sensitivity is obtained (similar or equal to 1.94 pm/mu epsilon), while the temperature sensitivity is small (similar or equal to 0.29 pm/degrees C), pointing to a temperature-independent strain sensor. When the fibre is coated, the strain sensitivity remains essentially the same, while the temperature sensitivity becomes much larger and with a value that changes with the localisation of the temperature variation range.
2007
Authors
Frazao, O; Marques, L; Marques, J; Baptista, JM; Santos, JL;
Publication
Third European Workshop on Optical Fibre Sensors
Abstract
This work presents a temperature independent strain/load sensor using a highly birefringent photonic crystal fibre loop mirror. The length of the sensing head is 38 centimetres and its corresponding wavelength spacing between two interferometer minima is 8 nm. The obtained strain and transverse load sensitivity were 1.21 pm/mu epsilon and 0.37 nm/Kg/mm, respectively, while is insensitive to temperature (0.3 pm/degrees C).
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.