Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Orlando Frazão

2007

Stimulated Brillouin scattering as the referencing mechanism of an optical fibre intensity sensor

Authors
Baptista, JM; Marques, JM; Frazao, O; Santos, S; Santos, JL; Marques, MB;

Publication
OPTICS COMMUNICATIONS

Abstract
An optical fibre intensity sensor referenced by stimulated Brillouin scattering is presented. The optical sensor uses Fresnel reflection signal at the sensor fibre end and employs an adequate relationship between Brillouin and Rayleigh scattering and Fresnel reflection to have a referenced optical fibre intensity sensor addressed in reflection.

2007

Fiber optic displacement sensing monitored by an OTDR and referenced by Fresnel reflection and by fiber Bragg gratings

Authors
Mendonca, S; Frazao, O; Baptista, JM; Santos, JL;

Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
This work presents a stud), of displacement sensing based on a fiber eight geometry shape monitored by an optical time domain reflectometer. The displacement sensor is referenced by Fresnel reflection or by a fiber Bragg grating structure located after the sensor. One of the advantages of the fiber Bragg grating as referencing device is its capability to be multiplexed by a number of displacement sensors in series along the optical fiber. This concept is also demonstrated using two Bragg gratings. (c) 2007 Wiley Periodicals, Inc.

2007

Strain and temperature discrimination using IF concatenated high-birefringence fiber loop mirrors

Authors
Frazao, O; Santos, JL; Baptista, JM;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
In this letter, a new configuration for simultaneous strain and temperature discrimination is, presented using two concatenated high-birefringence (Hi-Bi) fiber loop mirrors. The first loop mirror includes a Hi-Bi photonic crystal fiber, while the second one contains a length of internal elliptical cladding fiber. It is shown that by monitoring the wavelength and optical power of one of the peaks of the system spectral transfer function, it is possible to obtain information that permits the simultaneous measurement of strain and temperature.

2007

Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror

Authors
Frazao, O; Baptista, JM; Santos, JL;

Publication
IEEE SENSORS JOURNAL

Abstract
This work presents an optical sensor based on a highly birefringent photonic crystal fiber (Hi-Bi PCF) loop mirror. The length of the sensing head is 380 mm and its corresponding wavelength spacing between two interferometer minima is 8 nm. The optical sensor was characterized in strain and in temperature with an uncoated Hi-Bi PCF and with an acrylate coated Hi-Bi PCF. Different results for strain and temperature sensitivity were obtained. Relatively to the strain measurement, the sensor with the uncoated Hi-Bi PCF presents slightly less sensitivity (1.11 pm/mu epsilon) when compared with coated Hi-Bi PCF (1.21 pm/mu epsilon). For the temperature measurement and with the uncoated Hi-Bi PCF, the optical sensor is insensitive to temperature (0.29 pm/K).

2007

Recent advances in high-birefringence fiber loop mirror sensors

Authors
Frazao, O; Baptista, JM; Santos, JL;

Publication
SENSORS

Abstract
Recent advances in devices and applications of high-birefringence fiber loop mirror sensors are addressed. In optical sensing, these devices may be used as strain and temperature sensors, in a separate or in a simultaneous measurement. Other described applications include: refractive index measurement, optical filters for interrogate gratings structures and chemical etching control. The paper analyses and compares different types of high-birefringence fiber loop mirror sensors using conventional and microstructured optical fibers. Some configurations are presented for simultaneous measurement of physical parameters when combined with others optical devices, for example with a long period grating.

2007

Simple sensing head geometry using fibre Bragg gratings for strain-temperature discrimination

Authors
Frazao, O; Marques, L; Marques, JM; Baptista, JM; Santos, JL;

Publication
OPTICS COMMUNICATIONS

Abstract
In this work, a simple sensing head geometry using fibre Bragg gratings for strain and temperature discrimination is presented. The sensing head geometry consists in one fibre with two FBGs bonded with a dummy optical fibre. Due to this new configuration, different strain sensitivities of the two FBGs are obtained (approximate to 65% difference), while temperature sensitivities remain the same. This difference in strain sensitivities is substantially larger than in all previously reported dual grating sensors. The obtained experimental errors were +/- 13.48 mu epsilon and +/- 2.44 degrees C, respectively. It is also demonstrated that this new configuration can be used as a temperature-independent strain sensor.

  • 59
  • 89