Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by José Ricardo Andrade

2024

ML-assistant for human operators using alarm data to solve and classify faults in electrical grids

Authors
Campos, V; Klyagina, O; Andrade, JR; Bessa, RJ; Gouveia, C;

Publication
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
Nowadays, human operators at control centers analyze a large volume of alarm information during outage events and must act fast to restore the service. To assist operator decisions this work proposes novel machine learning-based functions aiming to: (a) classify the complexity of a fault occurrence (Occurrences Classifier) and its cause (Fault Cause Classifier) based on its alarm events; (b) provide fast insights to the operator on how to solve it (Data2Actions). The Occurrences Classifier takes alarm information of an occurrence and classifies it as a simpleor complexoccurrence, while the Fault Cause Classifier predicts the cause class of MV lines faults. The Data2Actions takes a sequence of alarm information from the occurrence and suggests a more adequate sequence of switching actions to isolate the fault section. These algorithms were tested on real data from a Distribution System Operator and showed: (a) an accuracy of 86% for the Data2Actions, (b) an accuracy of 68% for the Occurrences Classifier, and (c) an accuracy of 74% for the Fault Cause Classifier. It also proposes a new representation for SCADA event log data using graphs, which can help human operators identify infrequent alarm events or create new features to improve model performance.

2024

Dynamic pricing in EV charging stations with renewable energy and battery storage

Authors
Silva, CAM; Andrade, JR; Bessa, RJ; Lobo, F;

Publication
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024

Abstract
The integration of electric vehicles is paramount to the electrification of the transport sector, supporting the energy transition. The charging process of electric vehicles can be perceived as a controllable load and targeted with price or incentive-based programs. Demand-side management can optimize charging station performance and integrate renewable energy generation through electrical energy storage. Data flowing through charging stations can be used in computational approaches to solve open challenges and create new services, such as a dynamic pricing strategy, where the charging tariff depends on operating conditions. This work presents a data-driven service that optimizes day-ahead charging tariffs with a bilevel optimization problem and develops a case study around a large-scale pilot. The impact of photovoltaics and battery storage on the dynamic pricing scheme was assessed. A dynamic pricing strategy was found to benefit self-consumption and self-sufficiency of the charging station, increasing over 4 percentage points in some cases.

2024

Enhancing the European power system resilience with a recommendation system for voluntary demand response

Authors
Silva, CAM; Bessa, RJ; Andrade, JR; Coelho, FA; Costa, RB; Silva, CD; Vlachodimitropoulos, G; Stavropoulos, D; Chadoulos, S; Rua, DE;

Publication
ISCIENCE

Abstract
Climate change, geopolitical tensions, and decarbonization targets are bringing the resilience of the European electric power system to the forefront of discussion. Among various regulatory and technological solutions, voluntary demand response can help balance generation and demand during periods of energy scarcity or renewable energy generation surplus. This work presents an open data service called Interoperable Recommender that leverages publicly accessible data to calculate a country-specific operational balancing risk, providing actionable recommendations to empower citizens toward adaptive energy consumption, considering interconnections and local grid constraints. Using semantic interoperability, it enables third- party services to enhance energy management and customize applications to consumers. Real-world pilots in Portugal, Greece, and Croatia with over 300 consumers demonstrated the effectiveness of providing signals across diverse contexts. For instance, in Portugal, 7% of the hours included actionable recommendations, and metering data revealed a consumption decrease of 4% during periods when consumers were requested to lower consumption.

  • 3
  • 3