Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by José Villar

2020

Power-to-Peer: A blockchain P2P post-delivery bilateral local energy market

Authors
Mello, J; Villar, J; Bessa, RJ; Lopes, M; Martins, J; Pinto, M;

Publication
International Conference on the European Energy Market, EEM

Abstract
This paper proposes a Local Energy Market using a P2P blockchain-powered marketplace where agents bilaterally trade energy after the consumption and production period, and not before, as usual in electricity market design. The EU and MIBEL regulatory framework for Renewable Energy Communities potentially creates space for such a market, but some improvements in the settlement procedures and agent's participation must be met. © 2020 IEEE.

2021

Annualization of Renewable Investment Costs for Finite Horizon Electricity Pricing and Cost Recovery

Authors
Campos, FA; Villar, J; Centeno, E;

Publication
SUSTAINABILITY

Abstract
The increasing penetration of renewable electricity generation is complicating the bidding and estimating processes of electricity prices, partly due to the shift of the overall cost sensitivity from operation (fuel) costs to investment costs. However, cost minimization models for capacity expansion are frequently based on the principle that, for a perfectly adapted system allowing non-served energy, marginal remuneration allows overall operation and investments costs recovery. In addition, these models are usually formulated as finite-horizon problems when they should be theoretically solved for infinite horizons under the assumption of companies' infinite lifespan, but infinite horizon cannot be dealt with mathematical programming since it requires finite sets. Previous approaches have tried to overcome this drawback with finite horizon models that tend asymptotically to the original infinite ones and, in many cases, the investment costs are annualized based on the plants' lifespan, sometimes including a cost residual value. This paper proposes a novel approach with a finite horizon that guarantees the investment costs' recovery. It is also able to obtain the marginal electricity costs of the original infinite horizon model, without the need for residual values or non-served energy. This new approach is especially suited for long-term electricity pricing with investments in renewable assets when non-served demand is banned or when no explicit capacity remuneration mechanisms are considered.

2021

Electricity Cost of Green Hydrogen Generation in the Iberian Electricity Market

Authors
De Oliveira, AR; Collado, JV; Saraiva, JT; Domenech, S; Campos, FA;

Publication
2021 IEEE MADRID POWERTECH

Abstract
The green hydrogen (H-2) technology has an important role to play in the European Union energy strategy towards decarbonization. Apart from traditional H-2 industrial usages, there is an increasing attention to its use in the heavy transport sector, in other energy-intensive industries, and in heating applications. Green H-2 production is planned to be based on renewable electricity generation and its production at an industrial scale may have a significant impact on the electricity markets. This research assesses the electricity cost of producing H-2 and its impact on the Iberian electricity market. Different evolution scenarios including a partially flexible H-2 demand, based on the Spanish and Portuguese energy and climate plans, have been considered for this assessment.

2021

Characterization of TSO and DSO Grid System Services and TSO-DSO Basic Coordination Mechanisms in the Current Decarbonization Context

Authors
Silva, R; Alves, E; Ferreira, R; Villar, J; Gouveia, C;

Publication
ENERGIES

Abstract
Power systems rely on ancillary services (ASs) to ensure system security and stability. Until recently, only the conventional power generation resources connected to the transmission grids were allowed to provide these ASs managed by the transmission system operators (TSOs), while distribution system operators (DSOs) had a more passive role, focused on guaranteeing distribution capacity to bring power to final consumers with enough quality. Now, with the decarbonization, digitalization and decentralization processes of the electrical networks, the growing integration of distributed energy resources (DERs) in distribution grids are displacing conventional generation and increasing the complexity of distribution networks' operation, requiring the implementation of new active and coordinated management strategies between TSOs and DSOs. In this context, DERs are becoming potential new sources of flexibility for both TSOs and DSOs in helping to manage the power system. This paper proposes a systematic characterization of both traditional and potentially new ASs for TSOs, and newly expected DSO local system services to support the new distribution grid operation paradigm, reviewing, in addition, the main TSO-DSO coordination mechanisms.

2021

Explanatory and Causal Analysis of the Portuguese Manual Balancing Reserve

Authors
Goncalves, C; Ribeiro, M; Viana, J; Fernandes, R; Villar, J; Bessa, R; Correia, G; Sousa, J; Mendes, V; Nunes, AC;

Publication
2021 IEEE MADRID POWERTECH

Abstract
This paper analyzes the activation of the manual balancing reserve of the Portuguese system and its prices for the period 2015-2017. Standard, logistic and LASSO regression models, causal analysis based on Bayesian networks and random forests are applied. Results show that the variables that better explain the activation of the manual reserve are the imbalances of both renewable generation and demand, but surprisingly forecasted with persistence models based on the last verified measurements (available 15 minutes before the reserve activation), instead of using more elaborated models based on production forecasts. Prices, however, are harder to explain suggesting the need for additional information, such as bidding prices not used in this study.

2021

Comparative Analysis of Self-Consumption and Energy Communities Regulation in the Iberian Peninsula

Authors
Rocha, R; Mello, J; Villar, J; Saraiva, JT;

Publication
2021 IEEE MADRID POWERTECH

Abstract
Energy communities and self-consumption are considered as major drivers to achieve the decarbonization of the power sector, contributing to further increase the penetration of renewables, and empowering end consumers by turning them more active and flexible regarding electricity consumption. Considering the relevance of this topic and given that the corresponding legislation is recent, this paper summarizes the European Regulation on self-consumption and renewable energy communities and describes, analyses and compares its transposition to the Portuguese and Spanish national regulations. The main regulatory barriers for renewable energy communities' rollout are identified and regulatory improvements are proposed to overcome them.

  • 9
  • 18