Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Diana Filipa Guimarães

2023

Conditioning Solid-State Anode-Less Cells for the Next Generation of Batteries

Authors
Baptista, MC; Gomes, BM; Capela, D; Ferreira, MFS; Guimaraes, D; Silva, NA; Jorge, PAS; Silva, JJ; Braga, MH;

Publication
BATTERIES-BASEL

Abstract
Anode-less batteries are a promising innovation in energy storage technology, eliminating the need for traditional anodes and offering potential improvements in efficiency and capacity. Here, we have fabricated and tested two types of anode-less pouch cells, the first using solely a copper negative current collector and the other the same current collector but coated with a nucleation seed ZnO layer. Both types of cells used the same all-solid-state electrolyte, Li2.99Ba0.005ClO composite, in a cellulose matrix and a LiFePO4 cathode. Direct and indirect methods confirmed Li metal anode plating after charging the cells. The direct methods are X-ray photoelectron spectroscopy (XPS) and laser-induced breakdown spectroscopy (LIBS), a technique not divulged in the battery world but friendly to study the surface of the negative current collector, as it detects lithium. The indirect methods used were electrochemical cycling and impedance and scanning electron microscopy (SEM). It became evident the presence of plated Li on the surface of the current collector in contact with the electrolyte upon charging, both directly and indirectly. A maximum average lithium plating thickness of 2.9 mu m was charged, and 0.13 mu m was discharged. The discharge initiates from a maximum potential of 3.2 V, solely possible if an anode-like high chemical potential phase, such as Li, would form while plating. Although the ratings and energy densities are minor in this study, it was concluded that a layer of ZnO, even at 25 degrees C, allows for higher discharge power for more hours than plain Cu. It was observed that where Li plates on ZnO, Zn is not detected or barely detected by XPS. The present anode-less cells discharge quickly initially at higher potentials but may hold a discharge potential for many hours, likely due to the ferroelectric character of the electrolyte.

2012

Lead concentration in feces and urine of exposed rats by x-ray fluorescence and electrothermal atomic absorption spectrometry

Authors
Guimaraes, D; Carvalho, ML; Becker, M; von Bohlen, A; Geraldes, V; Rocha, I; Santos, JP;

Publication
X-RAY SPECTROMETRY

Abstract
Measurements made in feces and urine of Wistar rats exposed to lead acetate (n?=?20) in drinking water since the fetal period were compared with those obtained from a control group (n?=?20) in order to assess the age influence on Pb excretion. The measurements were made in different collections of rats aging between 1 and 11?months. To determine the Pb content of the samples, total reflection X-ray fluorescence (TXRF) and electrothermal atomic absorption spectrometry (ETAAS) were used for the urine samples and energy dispersive X-ray fluorescence (EDXRF) was used for the feces.

2012

Lead in liver and kidney of exposed rats: Aging accumulation study

Authors
Guimaraes, D; Carvalho, ML; Geraldes, V; Rocha, I; Alves, LC; Santos, JP;

Publication
JOURNAL OF TRACE ELEMENTS IN MEDICINE AND BIOLOGY

Abstract
The concentration of lead in liver and kidneys of Wistar rats, fed with lead since fetal period in relation to their age and to a control group, was determined. A group of rats was exposed to lead acetate (n = 30) in drinking water and the other group was exposed to normal water (n = 20). Samples were collected from rats aging between 1 and 11 months and were analyzed by Energy Dispersive X-ray Fluorescence (EDXRF) without any chemical preparation. The EDXRF results were assessed by the PIXE (Proton Induced X-ray Emission) technique. The formaldehyde used to preserve the samples was also analyzed by ETAAS (Electro-Thermal Atomic Absorption Spectrometry) in order to verify if there was any loss of lead from the samples to the formaldehyde. We found that the loss was not significant (<2%). Concerning the mean values of the lead concentration measured in the contaminated soft tissues, in liver they range from 6 to 22 mu g g(-1), and in kidneys from 44 to 79 mu g g(-1). The control rats show, in general, values below the EDXRF detection limit (2 mu g g(-1)). The ratio kidney/liver ranges from 2 to 10 and is strongly positively correlated with the age of the animals. A Spearman correlation matrix to investigate the correlation between elemental concentrations and the dependence of these concentrations with age showed that there is a strong positive correlation with age for lead in the liver but not in the kidney. The correlation matrix showed also that the concentration of lead in these two soft tissues is not correlated. The lead accumulation in liver is made by different plateaus that strongly decrease with age. It was verified the existence of two levels of accumulation in kidney, not very highlighted, which might be indicative of a maximum accumulation level for lead in kidney.

2011

Ultrasonic energy as a tool to overcome some drawbacks in the determination of lead in brain tissue and urine of rats

Authors
Guimaraes, D; Santos, JP; Carvalho, ML; Vale, G; Santos, HM; Geraldes, V; Rocha, I; Capelo, JL;

Publication
TALANTA

Abstract
An ultrasonic assisted solid-liquid extraction method was developed to determine the level of lead in the brain and urine of rats. Lead was determined by electrothermal atomic absorption spectrometry with longitudinal-Zeeman background correction. Several analytical drawbacks were addressed and overcome, namely small brain sample mass and the formation of precipitate in the urine samples. Utrasonication provided by an ultrasonic probe succeeded in extracting lead from brain samples. Furthermore, it was demonstrated that the formation of a precipitate lowered the lead content in the liquid phase of the urine. Lead was back extracted from the precipitate to the liquid phase with the aid of ultrasonic energy and acidifying the urine with 10% v/v nitric acid. A microwave-assisted acid digestion protocol was used to check the completeness of the lead extraction. The within bath and between bath precision was 5% (n = 9) and 7% (n = 3) respectively. The limit of quantification was 1.05 mu g g(-1) for brain samples and 2.1 mu g L(-1) for urine samples. A total of 6 samples of urine and 12 samples of brain from control rats and another 6 samples of urine and 12 samples of brain from rats fed with tap water rich in lead acetate were used in this research. Lead levels in brain and urine from exposed rats ranged from 1.9 +/- 0.2 mu g g(-1) to 3.5 +/- 0.2 mu g g(-1) and from 752 +/- 56 mu g L(-1) to 60.9 +/- 1.2 mg L(-1) respectively. Statistically significant differences of levels of lead in brain and urine were found between exposed and non exposed rats.

2012

Study of lead accumulation in bones of Wistar rats by X-ray fluorescence analysis: aging effect

Authors
Guimaraes, D; Carvalho, ML; Geraldes, V; Rocha, I; Santos, JP;

Publication
METALLOMICS

Abstract
The accumulation of lead in several bones of Wistar rats with time was determined and compared for the different types of bones. Two groups were studied: a control group (n = 20), not exposed to lead and a contaminated group (n = 30), exposed to lead from birth, first indirectly through mother's milk, and then directly through a diet containing lead acetate in drinking water (0.2%). Rats age ranged from 1 to 11 months, with approximately 1 month intervals and each of the collections had 3 contaminated rats and 2 control rats. Iliac, femur, tibia-fibula and skull have been analysed by Energy Dispersive X-ray Fluorescence Technique (EDXRF). Samples of formaldehyde used to preserve the bone tissues were also analysed by Electrothermal Atomic Absorption (ETAAS), showing that there was no significant loss of lead from the tissue to the preservative. The bones mean lead concentration of exposed rats range from 100 to 300 mu g g(-1) while control rats never exceeded 10 mu g g(-1). Mean bone lead concentrations were compared and the concentrations were higher in iliac, femur and tibia-fibula and after that skull. However, of all the concentrations in the different collections, only those in the skull were statistically significantly different (p < 0.05) from the other types of bones. Analysis of a radar chart also allowed us to say that these differences tend to diminish with age. The Spearman correlation test applied to mean lead concentrations showed strong and very strong positive correlations between all different types of bones. This test also showed that mean lead concentrations in bones are negatively correlated with the age of the animals. This correlation is strong in iliac and femur and very strong in tibia-fibula and skull. It was also shown that the decrease of lead accumulation with age is made by three plateaus of accumulation, which coincide, in all analysed bones, between 2nd-3rd and 9th-10th months.

2023

Robust and interpretable mineral identification using laser-induced breakdown spectroscopy mapping

Authors
Capela D.; Ferreira M.F.S.; Lima A.; Dias F.; Lopes T.; Guimarães D.; Jorge P.A.S.; Silva N.A.;

Publication
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY

Abstract
Fast and precise identification of minerals in geological samples is of paramount importance for the study of rock constituents and for technological applications in the context of mining. However, analyzing samples based only on the extrinsic properties of the minerals such as color can often be insufficient, making additional analysis crucial to improve the accuracy of the methods. In this context, Laser-induced breakdown spectroscopy mapping is an interesting technique to perform the study of the distribution of the chemical elements in sample surfaces, thus allowing deeper insights to help the process of mineral identification. In this work, we present the development and deployment of a processing pipeline and algorithm to identify spatial regions of the same mineralogical composition through chemical information in a fast and automatic way. Furthermore, by providing the necessary labels to the results on a training sample, we can turn this unsupervised methodology into a classifier that can be used to generalize and classify minerals in similar but unseen samples. The results obtained show good accuracy in reproducing the expected mineral regions and extend the interpretability of previous unsupervised methods with a visualization tool for cluster assignment, thus paving for future applications in contexts requiring high-throughput mineral identification systems, such as mining.

  • 4
  • 5