2024
Authors
Ribeiro, J; Fontes, T; Soares, C; Borges, JL;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Subgroup discovery (SD) aims at finding significant subgroups of a given population of individuals characterized by statistically unusual properties of interest. SD on event logs provides insight into particular behaviors of processes, which may be a valuable complement to the traditional process analysis techniques, especially for low -structured processes. This paper proposes a scalable and efficient method to search significant SD rules on frequent sequences of events, exploiting their multidimensional nature. With this method, it is intended to identify significant subsequences of events where the distribution of values of some target aspect is significantly different than the same distribution for the entire event log. A publicly available real -life event log of a Dutch hospital is used as a running example to demonstrate the applicability of our method. The proposed approach was applied on a real -life case study based on the public transport of a medium size European city (Porto, Portugal), for which the event data consists of 133 million smartcard travel validations from buses, trams and trains. The results include a characterization of mobility flows over multiple aspects, as well as the identification of unexpected behaviors in the flow of commuters (public transport). The generated knowledge provided a useful insight into the behavior of travelers, which can be applied at operational, tactical and strategic business levels, enhancing the current view of the transport services to transport authorities and operators.
2024
Authors
Torres, AI; Beirão, G;
Publication
Artificial Intelligence Approaches to Sustainable Accounting
Abstract
This chapter aims to contribute to the understanding of how artificial intelligence (AI) technologies can promote increased business revenues, cost reductions, and enhanced customer experience, as well as society's well-being in a sustainable way. However, these AI benefits also come with risks and challenges concerning organizations, the environment, customers, and society, which need further investigation. This chapter also examines and discusses how AI can either enable or inhibit the delivery of the goals recognized in the UN 2030 Agenda for Sustainable Business Models Development. In this chapter, the authors conduct a bibliometric review of the emerging literature on artificial intelligence (AI) technolo¬gies implications on sustainable business models (SBM), in the perspective of Sustainable Development Goals (SDGs) and investigate research spanning the areas of AI, and SDGs within the economic group. The authors examine an effective sample of 69 publications from 49 different journals, 225 different institutions, and 47 different countries. On the basis of the bibliometric analysis, this study selected the most significant published sources and examined the changes that have occurred in the conceptual framework of AI and SBM in light of SDGs research. This chapter makes some significant contributions to the literature by presenting a detailed bibliometric analysis of the research on the impacts of AI on SBM, enhancing the understanding of the knowledge structure of this research topic and helping to identify key knowledge gaps and future challenges. © 2024, IGI Global. All rights reserved.
2024
Authors
Duarte, SP; de Sousa, JP; de Sousa, JF;
Publication
JOURNAL OF URBAN MOBILITY
Abstract
The evolution of urban morphology and urban mobility reveals a complex and multidimensional relation that has been historically linked to the evolution of technology and its influence on people's behaviour, desires, and needs. The increasing level of digitalization of human interactions in both social and work environments has created a new paradigm for urban mobility. Alongside, sustainability concerns are also accelerating the design of new policies for improving citizens' quality of life in urban areas. To address this new paradigm, municipalities need to consider new methodologies encompassing the different dimensions of the urban environment. This can be achieved if key stakeholders participate in co-creating and co-designing new solutions for urban mobility. In this paper we propose a multidisciplinary approach to these problems, supported by service-dominant logic concepts. The approach was used to design the CoDUMIS framework that brings together four dimensions of urban areas (social, urban, technological, and organizational). The application of the framework to four distinct cases, in Portuguese municipalities, resulted in a set of guidelines that help municipalities to improve their services and policies in a participatory environment, involving all the stakeholders.
2024
Authors
Pereira, R; Santos, MJ; Martins, S;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2024, PT II
Abstract
Food waste poses a significant challenge to the sustainability of traditional food production systems, prompting global efforts to combat waste throughout the supply chain. Sustainable food production emerges as a critical concept in response to increasing concerns about environmental degradation and the need for alternative protein sources driven by global population growth. In this context, insect production offers a promising solution by converting low-value organic waste into nutrient-rich products, thus reducing waste and environmental impact. This paper addresses the urgent need for sustainable and efficient food production systems by introducing a facility location problem within the network design of insect production. The objective is to develop methods to scale insect-derived product production by identifying optimal locations with the best conditions for establishing insect production facilities. Emphasis is placed on connecting suppliers with production, highlighting the critical role suppliers and their by-products play in promoting a sustainable industry. Instances were generated to assess model performance, including supplier and facility locations, by-product availability and selection. Varying by-product availability yielded different optimization outcomes. The experiments results offered insights into the model's behavior under different conditions. The results shown that varying the composition of substrate had a major implication on the augment of costs compared to varying the by-product availability.
2024
Authors
Ferreira, P; Pardal, A; Martins, S;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2024, PT II
Abstract
Pickup and delivery problems are frequently encountered problems in transport companies. This paper presents a variant of the homogeneous vehicle, single-to-single Pickup and Delivery Problem with Time Windows, where several vehicles must fulfill transport requests from pickup nodes to delivery nodes, called missions, with associated service level agreements (SLA). A mathematical programming model is proposed to tackle this variant, focused on optimizing the allocation and sequencing of missions to be executed by autonomous vehicles. Numerical experiments are performed comparing instances with missions with long and short SLAs. The results show that the model takes longer to find the optimal solution when the missions have short SLAs and increased difficulty in meeting them if the number of vehicles is limited.
2024
Authors
Zeiträg, Y; Figueira, JR; Figueira, G;
Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Abstract
Lot-sizing and scheduling in a job shop environment is a fundamental problem that appears in many industrial settings. The problem is very complex, and solutions are often needed fast. Although many solution methods have been proposed, with increasingly better results, their computational times are not suitable for decision-makers who want solutions instantly. Therefore, we propose a novel greedy heuristic to efficiently generate production plans and schedules of good quality. The main innovation of our approach represents the incorporation of a simulation-based technique, which directly generates schedules while simultaneously determining lot sizes. By utilising priority rules, this unique feature enables us to address the complexity of job shop scheduling environments and ensures the feasibility of the resulting schedules. Using a selection of well-known rules from the literature, experiments on a variety of shop configurations and complexities showed that the proposed heuristic is able to obtain solutions with an average gap to Cplex of 4.12%. To further improve the proposed heuristic, a cooperative coevolutionary genetic programming-based hyper-heuristic has been developed. The average gap to Cplex was reduced up to 1.92%. These solutions are generated in a small fraction of a second, regardless of the size of the instance.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.