Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CEGI

2023

A review on urban traffic cameras: Video image processing techniques and applications

Authors
Barros, D; Ferreira, MC; Silva, AR;

Publication
Advances in Transportation Studies

Abstract
Nowadays, cities face severe problems related to traffic management and mobility in general. Therefore, technologies have been developed that can handle these situations and somehow mitigate the caused impact, such as CCTV cameras. However, the techniques for analyzing the images collected by these cameras are increasingly complex and have numerous applications, being dispersed in the literature. Therefore, this article fills an important research gap by presenting a systematic review of the literature on the possible applications of data collected from CCTV cameras and the image analysis and processing techniques that have been developed and proposed in recent years. This systematic review followed the PRISMA statement guidelines and checklist, and three databases were searched, namely Scopus, Web of Science, and Inspec. From the analysis performed, the following applications were identified: Image/video analysis and traffic estimation, pedestrian detection, traffic data analysis, and forecasting, and traffic management. Regarding the image analysis and processing techniques YOLO (only look once), GMM (Gaussian mixture method), morphological methods, fuzzy logic, and other proprietary methods stand out. After a thorough analysis of traffic data, most works still implemented relatively trivial traffic management systems to generate a series of actions to be eventually applied to traffic controllers. Additionally, it was realized that these techniques could be implemented in industrial products from a future perspective. © 2023, Aracne Editrice. All rights reserved.

2023

Preface

Authors
Bhateja, V; Yang, X; Ferreira, MC; Sengar, SS; Travieso Gonzalez, M;

Publication
Smart Innovation, Systems and Technologies

Abstract
[No abstract available]

2023

The Art of the Deal: Machine Learning Based Trade Promotion Evaluation

Authors
Viana, DB; Oliveira, BB;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
Trade promotions are complex marketing agreements between a retailer and a manufacturer aiming to drive up sales. The retailer proposes numerous sales promotions that the manufacturer partially supports through discounts and deductions. In the Portuguese consumer packaged goods (CPG) sector, the proportion of price-promoted sales to regular-priced sales has increased significantly, making proper promotional planning crucial in ensuring manufacturer margins. In this context, a decision support system was developed to aid in the promotional planning process of two key product categories of a Portuguese CPG manufacturer. This system allows the manufacturer’s commercial team to plan and simulate promotional scenarios to better evaluate a proposed trade promotion and negotiate its terms. The simulation is powered by multiple gradient boosting machine models that estimate sales for a given promotion based solely on the scarce data available to the manufacturer. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Green reverse logistics: Exploring the vehicle routing problem with deliveries and pickups

Authors
Santos, MJ; Jorge, D; Ramos, T; Barbosa-Povoa, A;

Publication
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE

Abstract
The Vehicle Routing Problem with Divisible Deliveries and Pickups (VRPDDP) is under-explored in literature, yet it has a wide application in practice in a reverse logistics context, where the collection returnable items must also be ensured along with the traditional delivery of products to customers. problem considers that each customer has both delivery and pickup demands and may be visited twice in the same or different routes (i.e., splitting customers' visits). In several reverse logistics problems, capacity restrictions are required to either allow the movement of the driver inside the vehicle to arrange the loads or to avoid cross-contamination between delivery and pickup loads. In this work, explore the economic and the environmental impacts of the VRPDDP, with and without restrictions the free capacity, and compare it with the traditional Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP), on savings achieved by splitting customers visits. An exact method, solved through Gurobi, and an ALNS metaheuristic are coded in Python and used to test well-known and newly generated instances. A multi-objective approach based on the augmented e-constraint method is applied to obtain and compare solutions minimizing costs and CO2 emissions. The results demonstrate that splitting customer visits reduces the CO2 emissions for load-constrained distribution problems. Moreover, savings percentage of the VRPDDP when compared to the VRPSDP is higher for instances with a random network than when a clustered network of customers is considered.

2023

Preventive maintenance policy in photovoltaic systems using Reinforcement Learning

Authors
Bacalhau, E; Casacio, L; Barbosa, F; Yamada, F; Guimarães, L;

Publication
Proc. of the 12th IMA International Conference on Modelling in Industrial Maintenance and Reliability

Abstract

2023

An introduction to the two-dimensional rectangular cutting and packing problem

Authors
Oliveira, O; Gamboa, D; Silva, E;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Cutting and packing problems have been widely studied in the last decades, mainly due to the variety of industrial applications where the problems emerge. This paper presents an overview of the solution approaches that have been proposed for solving two-dimensional rectangular cutting and packing problems. The main emphasis of this work is on two distinct problems that belong to the cutting and packing problem family. The first problem aims to place onto an object the maximum-profit subset of items, that is, output maximization, while the second one aims to place all the items using as few identical objects as possible, that is, input minimization. The objective of this paper is not to be exhaustive but to provide a solid grasp on two-dimensional rectangular cutting and packing problems by describing their most important solution approaches.

  • 32
  • 187