2022
Authors
Barbosa, F; Rampazzo, PCB; de Azevedo, AT; Yamakami, A;
Publication
APPLIED INTELLIGENCE
Abstract
This paper describes the development of a mechanism to deal with time windows constraints. To the best of our knowledge, the time windows constraints are difficult to be fulfilled even for state-of-the-art methods. Therefore, the main contribution of this paper is to propose a new computational technique to deal with such constraints to ensure the algorithm convergence. We test such technique in two metaheuristics to solve the discrete and dynamic Berth Allocation Problem. A data set generator was created, resulting in a diversity of problems in terms of time windows constraints. A detailed computational analysis was carried out to compare the performance for each metaheuristic.
2022
Authors
Neuenfeldt, A; Silva, E; Francescatto, M; Rosa, CB; Siluk, J;
Publication
COMPUTERS & OPERATIONS RESEARCH
Abstract
Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular twodimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints.
2022
Authors
Morgado, L; Torres, M; Beck, D; Torres, F; Almeida, A; Simões, A; Ramalho, F; Coelho, A;
Publication
8th International Conference of the Immersive Learning Research Network, iLRN 2022, Vienna, Austria, May 30 - June 4, 2022
Abstract
In the field of immersive learning, instructors often find it challenging to match their pedagogical approaches and content knowledge with specific technologies. Unfortunately, this usually results in either a lack of technology use or inappropriate use of some technologies. Teachers and trainers wishing to use immersive learning environments face a diversity of technological and pedagogical alternatives. To scaffold educators in their planning of immersive learning educational activities, we devised a recommendation tool, which maps educational context variables to the dimensions of immersion and uses educators' contexts to identify the closest educational uses. Sample educational activities for those uses are then presented, for various types of educational methodologies. Educators can use these samples to plan their educational activities in line with their current resources or to innovate by pursuing entirely different approaches.
2022
Authors
Ibrahim, B; Rabelo, L; Gutierrez-Franco, E; Clavijo-Buritica, N;
Publication
ENERGIES
Abstract
A smart grid is the future vision of power systems that will be enabled by artificial intelligence (AI), big data, and the Internet of things (IoT), where digitalization is at the core of the energy sector transformation. However, smart grids require that energy managers become more concerned about the reliability and security of power systems. Therefore, energy planners use various methods and technologies to support the sustainable expansion of power systems, such as electricity demand forecasting models, stochastic optimization, robust optimization, and simulation. Electricity forecasting plays a vital role in supporting the reliable transitioning of power systems. This paper deals with short-term load forecasting (STLF), which has become an active area of research over the last few years, with a handful of studies. STLF deals with predicting demand one hour to 24 h in advance. We extensively experimented with several methodologies from machine learning and a complex case study in Panama. Deep learning is a more advanced learning paradigm in the machine learning field that continues to have significant breakthroughs in domain areas such as electricity forecasting, object detection, speech recognition, etc. We identified that the main predictors of electricity demand in the short term: the previous week's load, the previous day's load, and temperature. We found that the deep learning regression model achieved the best performance, which yielded an R squared (R-2) of 0.93 and a mean absolute percentage error (MAPE) of 2.9%, while the AdaBoost model obtained the worst performance with an R-2 of 0.75 and MAPE of 5.70%.
2022
Authors
Riano, HB; Escobar, JW; Clavijo Buritica, N;
Publication
INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING COMPUTATIONS
Abstract
Guided by a real case, this paper efficiently proposes a new metaheuristic algorithm based on Simulated Annealing to solve the Heterogeneous Vehicle Routing Problem with Time Windows to deliver fresh meat in urban environments. Our proposal generates an initial feasible solution using a hybrid heuristic based on the well-known Travelling Salesman Problem (TSP) solution and, subsequently, refining it through a Simulated Annealing (SA). We have tested the efficiency of the proposed approach in a company case study related to the planning of the transportation of a regional distribution center meat company to customers within the urban and rural perimeter of Bogota, Colombia. The main goal is to reach a service level of 97% while reducing operational costs and several routes (used vehicles). The results show that the proposed approach finds better routes than the current ones regarding costs and service level within short computing times. The proposed scheme promises to solve the refrigerated vehicle routing problem. (c) 2022 by the authors; licensee Growing Science, Canada
2022
Authors
Boto, JM; Marreiros, A; Diogo, P; Pinto, E; Mateus, MP;
Publication
PUBLIC HEALTH NUTRITION
Abstract
Objective: This study aimed to identify health behaviours that determine adolescent's adherence to the Mediterranean diet (MD) through a decision tree statistical approach. Design: Cross-sectional study, with data collected through a self-fulfilment questionnaire with five sections: (1) eating habits; (2) adherence to the MD (KIDMED index); (3) physical activity; (4) health habits and (5) socio-demographic characteristics. Anthropometric and blood pressure data were collected by a trained research team. The Automatic Chi-square Interaction Detection (CHAID) method was used to identify health behaviours that contribute to a better adherence to the MD. Setting: Eight public secondary schools, in Algarve, Portugal. Participants: Adolescents with ages between 15 and 19 years (n 325). Results: According to the KIDMED index, we found a low adherence to MD in 9 center dot 0 % of the participants, an intermediate adherence in 45 center dot 5 % and a high adherence in 45 center dot 5 %. Participants that regularly have breakfast, eat vegetable soup, have a second piece of fruit/d, eat fresh or cooked vegetables 1 or more times a day, eat oleaginous fruits at least 2 to 3 times a week, and practice sports and leisure physical activities outside school show higher adherence to the MD (P < 0 center dot 001). Conclusions: The daily intake of two pieces of fruit and vegetables proved to be a determinant health behaviour for high adherence to MD. Strategies to promote the intake of these foods among adolescents must be developed and implemented.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.