Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CEGI

2021

Digitalization and omnichannel retailing: Innovative OR approaches for retail operations

Authors
Hubner, A; Amorim, P; Fransoo, J; Honhon, D; Kuhn, H; de Albeniz, VM; Robb, D;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
Omnichannel retailing and digitalization result in considerable challenges for the management and optimization of retail operations. The continued demand of quantitative insights, their practical need, and the growing availability of data motivates an increasing number of scientists and practitioners to intensify research on demand and supply-related issues in retailing. This featured cluster provides the state-of-the art literature on forecasting and digitalization technologies, channel structures and delivery concepts as well as logistics in omnichannel and online retailing. The featured cluster contains 17 articles that deal with such topics. © 2021 Elsevier B.V.

2021

Recent dynamic vehicle routing problems: A survey

Authors
Rios, BHO; Xavier, EC; Miyazawa, FK; Amorim, P; Curcio, E; Santos, MJ;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
Technological advances in the last two decades have aroused great interest in the class of dynamic vehicle routing problems (DVRPs), which is reflected in the significant growth of the number of articles published in this period. Our work presents a comprehensive review of the DVRP literature of the last seven years (2015-2021) focusing mainly on applications and solution methods. Consequently, we provide a taxonomy of the problem and a taxonomy of the related solution methods. The papers considered for this review are discussed, analyzed in detail and classified according to the proposed taxonomies. The results of the analysis reveal that 65% of the articles deal with dynamic and stochastic problems (DS) and 35% with dynamic and deterministic problems (DD). With respect to applications, 40% of articles correspond to the transportation of goods, 17.5% to services, 17.5% to the transport of people and 25% to generic applications. Among the solution methods, heuristics and metaheuristics stand out. We discussed the application opportunities associated with DVRPs in recent business models and new concepts of logistical operations. An important part of these new applications that we found in our review is in the segment of business-to-consumer crowd-sourced services, such as peer-to-peer ride-sharing and online food ordering services. In our review many of the applications fall into the stochastic and dynamic category. This means that for many of these applications, companies usually possess historical data about the dynamic and uncertainty sources of their routing problems. Finally, we present the main solution streams associated with DVRPs.

2021

Product line selection of fast-moving consumer goods *

Authors
Andrade, X; Guimaraes, L; Figueira, G;

Publication
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE

Abstract
The fast-moving consumer goods sector relies on economies of scale. However, its assortments have been overextended as a means of market share appropriation and top-line growth. This paper studies the se-lection of the optimal set of products for fast-moving consumer goods producers to offer, as there is no previous model for product line selection that satisfies the requirements of the sector. Our mixed -integer programming model combines a multi-category attraction model with a capacitated lot-sizing problem, shared setups and safety stock. The multi-category attraction model predicts how the demand for each product responds to changes within the assortment. The capacitated lot-sizing problem allows us to account for the indirect production costs associated with different assortments. As seasonality is prevalent in consumer goods sales, the production plan optimally weights the trade-off between stocking finished goods from a long run with performing shorter runs with additional setups. Finally, the safety stock extension addresses the effect of the demand uncertainty associated with each assortment. With the computational experiments, we assess the value of our approach using data based on a real case. Our findings suggest that the benefits of a tailored approach are at their highest in scenarios typical fast-moving consumer goods industry: when capacity is tight, demand exhibits seasonal patterns and high service levels are required. This also occurs when the firm has a strong competitive position and consumer price-sensitivity is low. By testing the approach in two real-world instances, we show that this decision should not be made based on the current myopic industry practices. Lastly, our approach obtains profits of up to 9.4% higher than the current state-of-the-art models for product line selection.

2021

Resource definition and allocation for a multi-asset portfolio with heterogeneous degradation

Authors
Dias, L; Leitao, A; Guimaraes, L;

Publication
RELIABILITY ENGINEERING & SYSTEM SAFETY

Abstract
When making long-term plans for their asset portfolios, decision-makers have to define a priori a maintenance budget that is to be shared among the several assets and managed throughout the planning period. During the planning period, the a priori budget is then allocated by managers to different operation and maintenance interventions ensuring the overall performance of the system. Because asset degradation is stochastic, a considerable amount of uncertainty is associated with this problem. Hence, to define a robust budget, it is essential to account for several degradation scenarios pertaining to the individual condition of each asset. This paper presents a novel mathematical formulation to tackle this problem in a heterogeneous multiasset portfolio. The proposed mathematical model was formulated as a mixed-integer programming two-stage stochastic optimization model with mean-variance constraints to minimize the number of scenarios with an insufficient budget. A Gamma process was used to model the condition of each individual asset while taking into consideration different technological features and operating conditions. We compared the solutions obtained with our model to alternative practices in a set of generated instances covering different types of multi-asset portfolios. This comparison allowed us to explore the value of modeling uncertainty and how it affects the generated solutions. The proposed approach led to gains in performance of up to 50% depending on the level of uncertainty. Furthermore, the model was validated using real-world data from a utility company working with portfolios of power transformers. The results obtained showed that the company could reduce costs by as much as 40%. Further conclusions showed that the cost-saving potential was higher in asset portfolios in worse condition and that defining a priori operation and maintenance interventions led to worse results. Finally, the results showcased how different decision-maker risk-levels affect the value of taking uncertainty into account.

2021

An unsupervised approach for fault diagnosis of power transformers

Authors
Dias, L; Ribeiro, M; Leitao, A; Guimaraes, L; Carvalho, L; Matos, MA; Bessa, RJ;

Publication
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL

Abstract
Electrical utilities apply condition monitoring on power transformers (PTs) to prevent unplanned outages and detect incipient faults. This monitoring is often done using dissolved gas analysis (DGA) coupled with engineering methods to interpret the data, however the obtained results lack accuracy and reproducibility. In order to improve accuracy, various advanced analytical methods have been proposed in the literature. Nonetheless, these methods are often hard to interpret by the decision-maker and require a substantial amount of failure records to be trained. In the context of the PTs, failure data quality is recurrently questionable, and failure records are scarce when compared to nonfailure records. This work tackles these challenges by proposing a novel unsupervised methodology for diagnosing PT condition. Differently from the supervised approaches in the literature, our method does not require the labeling of DGA records and incorporates a visual representation of the results in a 2D scatter plot to assist in interpretation. A modified clustering technique is used to classify the condition of different PTs using historical DGA data. Finally, well-known engineering methods are applied to interpret each of the obtained clusters. The approach was validated using data from two different real-world data sets provided by a generation company and a distribution system operator. The results highlight the advantages of the proposed approach and outperformed engineering methods (from IEC and IEEE standards) and companies legacy method. The approach was also validated on the public IEC TC10 database, showing the capability to achieve comparable accuracy with supervised learning methods from the literature. As a result of the methodology performance, both companies are currently using it in their daily DGA diagnosis.

2021

An integrated quantitative framework for supporting product design in the mold sector

Authors
Ferreira, I; Cabral, JA; Saraiva, P;

Publication
Injection Molding: Process, Design, and Applications

Abstract
The injection mold is a high precision tool responsible for the production of most plastic parts used everywhere. Its design is considered critically important for the quality of the product and efficient processing, as well as determinant for the economics of the entire injection molding process. However, typically, no formal engineering analysis is carried out during the mold design stage. In fact, traditionally, designers rely on their skills and intuition, following a set of general guidelines. This does not ensure that the final mold design is acceptable or the best option. At the same time, mold makers are now highly pressured to shorten both leading times and cost, as well as to accomplish higher levels of mold performance. For these reasons, it is imperative to adopt new methods and tools that allow for faster and higher integrated mold design. To that end, a new global approach, based on the integration of well-known quantitative techniques, such as Design for Six Sigma (DFSS), Structural Equation Modeling (SEM), Axiomatic Design (AD) and Multidisciplinary Design Optimization (MDO) is presented. Although some of these methods have been largely explored, individually or in combination with other methodologies, a quantitative integration of all aspects of design, in such a way that the whole process becomes logical and comprehensible, has not yet been considered. To that end, the DFSS methodology, through its IDOV roadmap, was adopted. It is based on the ICOV Yang and El-Haik proposal, establishing four stages for the design process: Identify, which aims to define customers’ requirements/expectations; Design, where the creation of a product concept, and its system-level design, is performed; Optimization, in which all the detailed design, through product optimization, is handled; and finally, Validation, where all product design decisions are validated, in order to verify if the new designed entity indeed meets customer and other requirements. As a result, this approach tackles the design of an injection mold in a global and quantitative approach, starting with a full understanding of customer requirements and converting them into optimal mold solutions. In order to validate it, an integrated platform was developed, where all different analysis modules were inserted and optimized through an overseeing code system. The results attained highlight the great potential of the proposed framework to achieve mold design improvements, with consequent reduction of rework and time savings for the entire mold design process. © 2011 by Nova Science Publishers, Inc.

  • 52
  • 183