Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CEGI

2025

Enhancing carsharing pricing and operations through integrated choice models

Authors
Oliveira, BB; Ahipasaoglu, SD;

Publication
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW

Abstract
Balancing supply and demand in free-floating one-way carsharing systems is a critical operational challenge. This paper presents a novel approach that integrates a binary logit model into a mixed integer linear programming framework to optimize short-term pricing and fleet relocation. Demand modeling, based on a binary logit model, aggregates different trips under a unified utility model and improves estimation by incorporating information from similar trips. To speed up the estimation process, a categorizing approach is used, where variables such as location and time are classified into a few categories based on shared attributes. This is particularly beneficial for trips with limited observations as information gained from similar trips can be used for these trips effectively. The modeling framework adopts a dynamic structure where the binary logit model estimates demand using accumulated observations from past iterations at each decision point. This continuous learning environment allows for dynamic improvement in estimation and decision-making. At the core of the framework is a mathematical program that prescribes optimal levels of promotion and relocation. The framework then includes simulated market responses to the decisions, allowing for real-time adjustments to effectively balance supply and demand. Computational experiments demonstrate the effectiveness of the proposed approach and highlight its potential for real-world applications. The continuous learning environment, combining demand modeling and operational decisions, opens avenues for future research in transportation systems.

2025

The Robust Vehicle Routing Problem With Synchronization: Models and Branch-And-Cut Algorithms

Authors
Soares, R; Parragh, N; Marques, A; Amorim, P;

Publication
Networks

Abstract
The Vehicle Routing Problem with Synchronization (VRPSync) aims to minimise the total routing costs while considering synchronization requirements that must be fulfilled between tasks of different routes. These synchronization requirements are especially relevant when it is necessary to have tasks being performed by vehicles within given temporal offsets, a frequent requirement in applications where multiple vehicles, crews, materials, or other resources are involved in certain operations. Although several works in the literature have addressed this problem, mainly the deterministic version has been tackled so far. This paper presents a robust optimization approach for the VRPSync, taking into consideration the uncertainty in vehicle travel times between customers. This work builds on existing approaches in the literature to develop mathematical models for the Robust VRPSync, as well as a branch-and-cut algorithm to solve more difficult problem instances. A set of computational experiments is also devised and presented to obtain insights regarding key performance parameters of the mathematical models and the solution algorithm. The results suggest that solution strategies where certain standard problem constraints are only introduced if a candidate solution violates any of those constraints provide more consistent improvements than approaches that rely on tailor-made cutting planes, added through separation routines. Furthermore, the analysis of the Price of Robustness indicators shows that the adoption of robust solutions can have a significant increase in the total costs, however, this increase quickly plateaus as budgets of uncertainty increase. © 2025 Wiley Periodicals LLC.

2025

Anew effective heuristic for the Prisoner Transportation Problem

Authors
Ferreira, L; Maciel, MVM; de Carvalho, JV; Silva, E; Alvelos, FP;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
The Prisoner Transportation Problem is an NP-hard combinatorial problem and a complex variant of the Dial-a- Ride Problem. Given a set of requests for pick-up and delivery and a homogeneous fleet, it consists of assigning requests to vehicles to serve all requests, respecting the problem constraints such as route duration, capacity, ride time, time windows, multi-compartment assignment of conflicting prisoners and simultaneous services in order to optimize a given objective function. In this paper, we present anew solution framework to address this problem that leads to an efficient heuristic. A comparison with computational results from previous papers shows that the heuristic is very competitive for some classes of benchmark instances from the literature and clearly superior in the remaining cases. Finally, suggestions for future studies are presented.

2025

A 3-level integrated lot sizing and cutting stock problem applied to a truck suspension factory

Authors
Andrade, PRD; De Araujo, SA; Cherri, AC; Lemos, FK;

Publication
TOP

Abstract
This paper studies the process of cutting steel bars in a truck suspension factory with the objective of reducing its inventory costs and material losses. A mathematical model is presented that focuses on decisions for a medium-term horizon (4 periods of 2 months). This approach addresses the one-dimensional 3-level integrated lot sizing and cutting stock problem, considering demand, inventory costs and stock level limits for bars (objects-level 1), springs (items-level 2) and spring bundles (final products-level 3), as well as the acquisition of bars as a decision variable. The solution to the proposed mathematical model is reached through an optimization package, using column generation along with a method for achieving integer solutions. The results obtained with real data demonstrate that the method provides significantly better solutions than those carried out at the company, whilst using reduced computational time. Additionally, the application of tests with random data enabled the analysis of both the effect of varying parameters in the solution, which provides managerial insights, and the overall performance of the method.

2024

Heuristics for online three-dimensional packing problems and algorithm selection framework for semi-online with full look-ahead

Authors
Ali, S; Ramos, AG; Carravilla, MA; Oliveira, JF;

Publication
APPLIED SOFT COMPUTING

Abstract
In online three-dimensional packing problems (3D-PPs), unlike offline problems, items arrive sequentially and require immediate packing decisions without any information about the quantities and sizes of the items to come. Heuristic methods are of great importance in solving online problems to find good solutions in a reasonable amount of time. However, the literature on heuristics for online problems is sparse. As our first contribution, we developed a pool of heuristics applicable to online 3D-PPs with complementary performance on different sets of instances. Computational results showed that in terms of the number of used bins, in all problem instances, at least one of our heuristics had a better or equal performance compared to existing heuristics in the literature. The developed heuristics are also fully applicable to an intermediate class between offline and online problems, referred to in this paper as a specific type of semi-online with full look-ahead, which has several practical applications. In this class, as in offline problems, complete information about all items is known in advance (i.e., full look-ahead); however, due to time or space constraints, as in online problems, items should be packed immediately in the order of their arrival. As our second contribution, we presented an algorithm selection framework, building on developed heuristics and utilizing prior information about items in this specific class of problems. We used supervised machine learning techniques to find the relationship between the features of problem instances and the performance of heuristics and to build a prediction model. The results indicate an 88% accuracy in predicting (identifying) the most promising heuristic(s) for solving any new instance from this class of problems.

2024

Optimizing multi-attribute pricing plans with time- and location-dependent rates for different carsharing user profiles

Authors
Golalikhani, M; Oliveira, BB; Correia, GHD; Oliveira, JF; Carravilla, MA;

Publication
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW

Abstract
One of the main challenges of one-way carsharing systems is to maximize profit by attracting potential customers and utilizing the fleet efficiently. Pricing plans are mid or long-term decisions that affect customers' decision to join a carsharing system and may also be used to influence their travel behavior to increase fleet utilization e.g., favoring rentals on off-peak hours. These plans contain different attributes, such as registration fee, travel distance fee, and rental time fee, to attract various customer segments, considering their travel habits. This paper aims to bridge a gap between business practice and state of the art, moving from unique single-tariff plan assumptions to a realistic market offer of multi-attribute plans. To fill this gap, we develop a mixed-integer linear programming model and a solving method to optimize the value of plans' attributes that maximize carsharing operators' profit. Customer preferences are incorporated into the model through a discrete choice model, and the Brooklyn taxi trip dataset is used to identify specific customer segments, validate the model's results, and deliver relevant managerial insights. The results show that developing customized plans with time- and location-dependent rates allows the operators to increase profit compared to fixed-rate plans. Sensitivity analysis reveals how key parameters impact customer choices, pricing plans, and overall profit.

  • 6
  • 191