Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CEGI

2023

The two-dimensional cutting stock problem with usable leftovers and uncertainty in demand

Authors
Nascimento, DN; Cherri, AC; Oliveira, JF; Oliveira, BB;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
When dealing with cutting problems, the generation of usable leftovers proved to be a good strategy for decreasing material waste. Focusing on practical applications, the main challenge in the implementation of this strategy is planning the cutting process to produce leftovers with a high probability of future use without complete information about the demand for any ordered items. We addressed the two-dimensional cutting stock with usable leftovers and uncertainty in demand, a complex and relevant problem recurring in companies due to the unpredictable occurrence of customer orders. To deal with this problem, a two-stage formulation that approximates the uncertain demand by a finite set of possible scenarios was proposed. Also, we proposed a matheuristic to support decision-makers by providing good-quality solutions in reduced time. The results obtained from the computational experiments using instances from the literature allowed us to verify the matheuristic performance, demonstrating that it can be an efficient tool if applied to real-life situations.

2023

A BIOBJECTIVE MATHEURISTIC FOR THE INTEGRATED SOLUTION OF THE IRREGULAR STRIP PACKING AND THE CUTTING PATH DETERMINATION PROBLEMS

Authors
Oliveira, LT; Carravilla, MA; Oliveira, JF; Toledo, FMB;

Publication
Pesquisa Operacional

Abstract
Irregular strip packing problems are present in a wide variety of industrial sectors, such as the garment, footwear, furniture and metal industry. The goal is to find a layout in which an object will be cut into small pieces with minimum raw-material waste. Once a layout is obtained, it is necessary to determine the path that the cutting tool has to follow to cut the pieces from the layout. In the latter, the goal is to minimize the cutting distance (or time). Although industries frequently use this solution sequence, the trade-off between the packing and the cutting path problems can significantly impact the production cost and productivity. A layout with minimum raw-material waste, obtained through the packing problem resolution, can imply a longer cutting path compared to another layout with more material waste but a shorter cutting path, obtained through an integrated strategy. Layouts with shorter cutting path are worthy of consideration because they may improve the cutting process productivity. In this paper, both problems are solved together using a biobjective matheuristic based on the Biased Random-Key Genetic Algorithm. Our approach uses this algorithm to select a subset of the no-fit polygons edges to feed the mathematical model, which will compute the layout waste and cutting path length. Solving both strip packing and cutting path problems simultaneously allows the decision-maker to analyze the compromise between the material waste and the cutting path distance. As expected, the computational results showed the trade-off’s relevance between these problems and presented a set of solutions for each instance solved. © 2023, Sociedade Brasileira de Pesquisa Operacional. All rights reserved.

2023

Foreword

Authors
Oliveira, JF;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
[No abstract available]

2023

Preface

Authors
Almeida, JP; Geraldes, CS; Lopes, IC; Moniz, S; Oliveira, JF; Pinto, AA;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
[No abstract available]

2023

Stochastic crowd shipping last-mile delivery with correlated marginals and probabilistic constraints

Authors
Silva, M; Pedroso, JP; Viana, A;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
In this work, we study last-mile delivery with the option of crowd shipping. A company uses occasional drivers to complement its fleet in the activity of delivering products to its customers. We model it as a variant of the stochastic capacitated vehicle routing problem. Our approach is data-driven, where not only customer orders but also the availability of occasional drivers are uncertain. It is assumed that marginal distributions of the uncertainty vector are known, but the joint distribution is difficult to estimate. We optimize considering a worst-case joint distribution and model with a strategic planning perspective, where we calculate an optimal a priori solution before the uncertainty is revealed. A limit on the infea-sibility of the routes due to the capacity is imposed using probabilistic constraints. We propose an extended formulation for the problem using column-dependent rows and implement a branch-price-and-cut algorithm to solve it. We also develop a heuristic approximation to cope with larger instances of the problem. Through computational experiments, we analyze the solution and performance of the implemented algorithms.

2023

Preface to the Special Issue on Operations Research in Healthcare

Authors
Viana, A; Marques, I; Dias, JM;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract

  • 7
  • 160