Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Susana Oliveira Silva

2023

Optical Fiber Flowmeter Based on a Michelson Interferometer

Authors
Monteiro, CS; Ferreira, M; Mendes, JP; Coelho, LCC; Silva, S; Frazão, O;

Publication
EPJ Web of Conferences

Abstract
In this work, an optical fiber flowmeter based on a Michelson interferometer is presented. The Michelson interferometer uses a long period fiber grating (LPFG) to couple light to the cladding modes followed by a section of a GO-coated single mode fiber (SMF). By radiating the GO thin film, it will increase its temperature changing the effective refractive index of the optical cavity of the Michelson interferometer. By placing the sensor on a gas flow, its temperature surface will decrease in a proportional manner to the flow rate. The sensor was studied in both static and dynamic dry nitrogen flow, attaining an absolute sensitivity of 17.4 ± 0.8 pm/(L.min-1) and a maximum response time of 1.1 ± 0.4 s.

2024

Linear Fiber Laser Configurations for Optical Concentration Sensing in Liquid Solutions

Authors
Soares, L; Perez-Herrera, RA; Novais, S; Ferreira, A; Silva, S; Frazao, O;

Publication
PHOTONICS

Abstract
In this study, different configurations based on linear fiber lasers were proposed and experimentally demonstrated to measure the concentration of liquid solutions. Samples of paracetamol liquid solutions with different concentrations, in the range from 52.61 to 201.33 g/kg, were used as a case-study. The optical gain was provided by a commercial bidirectional Erbium-Doped Fiber Amplifier (EDFA) and the linear cavity was obtained using two commercial Fiber Bragg Gratings (FBGs). The main difference of each configuration was the coupling ratio of the optical coupler used to extract the system signal. The sensing head corresponded to a Single-Mode Fiber (SMF) tip that worked as an intensity sensor. The results reveal that, despite the optical coupler used (50:50, 60:40, 70:30 or 80:20), all the configurations reached the laser condition, however, the concentration sensing was only possible using a laser drive current near to the threshold value. The configurations using a 70:30 and an 80:20 optical coupler allowed paracetamol concentration measurements with a higher sensitivity of (-3.00 +/- 0.24) pW/(g/kg) to be performed. In terms of resolution, the highest value obtained was 1.75 g/kg, when it was extracted at 20% of the output power to the linear cavity fiber laser configuration.

2024

Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating

Authors
Cunha, C; Monteiro, C; Vaz, A; Silva, S; Frazao, O; Novais, S;

Publication
SENSORS

Abstract
This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 mu m/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 +/- 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 +/- 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL.

2024

Coreless Silica Fiber Sensor based on Self-Image Theory and coated with Graphene Oxide

Authors
Cunha, C; Monteiro, C; Vaz, A; Silva, S; Frazao, O; Novais, S;

Publication
OPTICAL SENSING AND DETECTION VIII

Abstract
This work provides a method that combines graphene oxide coating and self-image theory to improve the sensitivity of optical sensors. The sensor is designed specifically to measure the amount of glucose present quantitatively in aqueous solutions that replicate the range of glucose concentrations found in human saliva. COMSOL Multiphysics 6.0 was used to simulate the self-imaging phenomenon using a coreless silica fiber (CSF). For high-quality self-imaging, the second and fourth self-imaging points are usually preferred because of their higher coupling efficiency, which increases the sensor sensitivity. However, managing the fourth self-image is more difficult because it calls for a longer CSF length. As a result, the first and second self-image points were the focus of the simulation in this work. After the simulation, using the Layerby-Layer method, the sensor was constructed to a length that matched the second self-image point (29.12 mm) and coated with an 80 mu m/mL graphene oxide layer. When comparing uncoated and graphene oxide-covered sensors to measure glucose in liquids ranging from 25 to 200 mg/dL, one bilayer of polyethyleneimine/graphene demonstrated an eight-fold improvement in sensitivity. The final sensor, built on graphene oxide, showed stability with a low standard deviation of 0.6 pm/min. It also showed sensitivity at 10.403 +/- 0.004 pm/(mg/dL) with a limit of detection of 9.15 mg/dL.

  • 21
  • 21