Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Tiago David Ferreira

2019

HILIGHT: A NEW SIMULATION PLATFORM FOR ADVANCED PHOTONICS

Authors
Guerreiro, A; Silva, NA; Costa, J; Gomes, M; Alves, R; Ferreira, TD; Madureira, IS; Pereira, AAM; Almeida, AL;

Publication
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
We report on the development of HiLight, a new multiphysics simulation platform for advanced photonics with interactive modules dedicated to the study of the propagation of light in multitude of spatially structured optical media, including nonlocal and nonlinear media, optical lattices with atomic gases and plasmas, among others.

2020

Using numerical methods from nonlocal optics to simulate the dynamics of N-body systems in alternative theories of gravity

Authors
Ferreira, TD; Silva, NA; Bertolami, O; Gomes, C; Guerreiro, A;

Publication
PHYSICAL REVIEW E

Abstract
The generalized Schrodinger-Newton system of equations with both local and nonlocal nonlinearities is widely used to describe light propagating in nonlinear media under the paraxial approximation. However, its use is not limited to optical systems and can be found to describe a plethora of different physical phenomena, for example, dark matter or alternative theories for gravity. Thus, the numerical solvers developed for studying light propagating under this model can be adapted to address these other phenomena. Indeed, in this work we report the development of a solver for the HiLight simulations platform based on GPGPU supercomputing and the required adaptations for this solver to be used to test the impact of new extensions of the Theory of General Relativity in the dynamics of the systems. In this work we shall analyze theories with nonminimal coupling between curvature and matter. This approach in the study of these new models offers a quick way to validate them since their analytical analysis is difficult. The simulation module, its performance, and some preliminary tests are presented in this paper.

2021

Exploring quantum-like turbulence with a two-component paraxial fluid of light

Authors
Silva, NA; Ferreira, TD; Guerreiro, A;

Publication
NONLINEAR OPTICS AND APPLICATIONS XII

Abstract
In this work we use the concept of paraxial fluids of light to explore quantum turbulence, probing a turbulent regime induced on an optical beam propagating inside a defocusing nonlinear media. For that purpose, we establish a physical analogue of a two-component quantum fluid by making use of orthogonal polarizations and incoherent beam interaction, obtaining a system for which the perturbative excitations follow a modified Bogoliubov-like dispersion relation. This dispersion relation features regions of instability that define an effective range of energy injection and that are easily tuned by manipulating the relative angle of incidence between the two components. Our numerical results support the predictions and show evidence of direct and inverse turbulent cascades expected from weak wave turbulence theories, which may inspire new ways to explore to quantum turbulence with optical analogues.

2021

Reservoir computing with solitons

Authors
Silva, NA; Ferreira, TD; Guerreiro, A;

Publication
NEW JOURNAL OF PHYSICS

Abstract
Reservoir computing is a promising framework that facilitates the approach to physical neuromorphic hardware by enabling a given nonlinear physical system to act as a computing platform. In this work, we exploit this paradigm to propose a versatile and robust soliton-based computing system using a discrete soliton chain as a reservoir. By taking advantage of its tunable governing dynamics, we show that sufficiently strong nonlinear dynamics allows our soliton-based solution to perform accurate regression and classification tasks of non-linear separable datasets. At a conceptual level, the results presented pave a way for the physical realization of novel hardware solutions and have the potential to inspire future research on soliton-based computing using various physical platforms, leveraging its ubiquity across multiple fields of science, from nonlinear optical media to quantum systems.

2021

Hardware-neutral tools for the exploration of optical phenomena in near-resonant atomic systems

Authors
Silva, NA; Ferreira, T; Guerreiro, A;

Publication
INTERNATIONAL JOURNAL OF MODERN PHYSICS C

Abstract
In the last three decades, a lot of research has been devoted to the optical response of an atomic media in near-to-resonant conditions and to how nonlinear optical properties are enhanced in these systems. However, as current research turns its attention towards multi-level and multidimensional systems interacting with several electromagnetic fields, the ever-increasing complexity of these problems makes it difficult to treat the semiclassical model of the Maxwell-Bloch equations analytically without any strongly-limiting approximations. Thus, numerical methods and particularly robust and fast computational tools, capable of addressing such class of modern and future problems in photonics, are mandatory. In this paper, we describe the development and implementation of a Maxwell-Bloch numerical solver that exploits the massive parallelism of the GPUs to tackle efficiently problems in multidimensional settings or featuring Doppler broadening effects. This constitutes a simulation tool that is capable of addressing a vast class of problems with considerable reduction of simulation time, featuring speedups up to 15 compared with the same codes running on a CPU.

2021

Pressureless static solutions in a Newton-Yukawa gravity model

Authors
Ferreira, TD; Novo, J; Silva, NA; Guerreiro, A; Bertolami, O;

Publication
PHYSICAL REVIEW D

Abstract
Nonminimally coupled curvature-matter gravity models are an interesting alternative to the theory of general relativity to address the dark energy and dark matter cosmological problems. These models have complex field equations that prevent a full analytical study. Nonetheless, in a particular limit, the behavior of a matter distribution can, in these models, be described by a Schrodinger-Newton system. In nonlinear optics, the Schrodinger-Newton system can be used to tackle a wide variety of relevant situations, and several numerical tools have been developed for this purpose. Interestingly, these methods can be adapted to study general relativity problems as well as its extensions. In this work, we report the use of these numerical tools to study a particular nonminimal coupling model that introduces two new potentials, an attractive Yukawa potential, and a repulsive potential proportional to the energy density. Using the imaginary-time propagation method, we have shown that static solutions arise even at low energy density regimes.

  • 3
  • 5