Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Rui António Rua

2021

Ranking programming languages by energy efficiency

Authors
Pereira, R; Couto, M; Ribeiro, F; Rua, R; Cunha, J; Fernandes, JP; Saraiva, J;

Publication
SCIENCE OF COMPUTER PROGRAMMING

Abstract
This paper compares a large set of programming languages regarding their efficiency, including from an energetic point-of-view. Indeed, we seek to establish and analyze different rankings for programming languages based on their energy efficiency. The goal of being able to rank programming languages based on their energy efficiency is both recent, and certainly deserves further studies. We have taken rigorous and strict solutions to 10 well defined programming problems, expressed in (up to) 27 programming languages, from the well known Computer Language Benchmark Game repository. This repository aims to compare programming languages based on a strict set of implementation rules and configurations for each benchmarking problem. We have also built a framework to automatically, and systematically, run, measure and compare the energy, time, and memory efficiency of such solutions. Ultimately, it is based on such comparisons that we propose a series of efficiency rankings, based on single and multiple criteria. Our results show interesting findings, such as how slower/faster languages can consume less/more energy, and how memory usage influences energy consumption. We also present a simple way to use our results to provide software engineers and practitioners support in deciding which language to use when energy efficiency is a concern. In addition, we further validate our results and rankings against implementations from a chrestomathy program repository, Rosetta Code., by reproducing our methodology and benchmarking system. This allows us to understand how the results and conclusions from our rigorously and well defined benchmarked programs compare to those based on more representative and real-world implementations. Indeed our results show that the rankings do not change apart from one programming language.

2022

Energy Efficiency of Web Browsers in the Android Ecosystem

Authors
Gonçalves, N; Rua, R; Cunha, J; Pereira, R; Saraiva, J;

Publication
CoRR

Abstract

2023

PyAnaDroid: A fully-customizable execution pipeline for benchmarking Android Applications

Authors
Rua, R; Saraiva, J;

Publication
2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION, ICSME

Abstract
This paper presents PyAnaDroid, an open-source, fully-customizable execution pipeline designed to benchmark the performance of Android native projects and applications, with a special emphasis on benchmarking energy performance. PyAnaDroid is currently being used for developing large-scale mobile software empirical studies and for supporting an advanced academic course on program testing and analysis. The presented artifact is an expandable and reusable pipeline to automatically build, test and analyze Android applications. This tool was made openly available in order to become a reference tool to transparently conduct, share and validate empirical studies regarding Android applications. This document presents the architecture of PyAnaDroid, several use cases, and the results of a preliminary analysis that illustrates its potential. Video demo: https://youtu.be/7AV3nrh4Qc8

2022

E-MANAFA: Energy Monitoring and ANAlysis tool For Android

Authors
Rua, R; Saraiva, J;

Publication
PROCEEDINGS OF THE 37TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2022

Abstract
This article introduces the E-MANAFA energy profiler, a plug-and-play, device-independent, model-based profiler capable of obtaining fine-grained energy measurements on Android devices. Besides having the capability to calculate performance metrics such as the energy consumed and runtime during a time interval, E-MANAFA also allows to estimate the energy consumed by each device component (e.g. CPU, WI-FI, screen). In this article, we present the main elements that compose this framework, as well as its workflow. In order to present the power of this tool, we demonstrate how the tool can measure the overhead of the instrumentation technique used in the PyAnaDroid application benchmarking pipeline, which already supports E-MANAFA to monitor power consumption in its Android application automatic execution process. Video demo: shorturl.at/hmyz5

  • 2
  • 2