2021
Authors
Pedrosa, J; Aresta, G; Ferreira, C; Mendonca, A; Campilho, A;
Publication
PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIOIMAGING), VOL 2
Abstract
Chest radiography is one of the most ubiquitous medical imaging exams used for the diagnosis and follow-up of a wide array of pathologies. However, chest radiography analysis is time consuming and often challenging, even for experts. This has led to the development of numerous automatic solutions for multipathology detection in chest radiography, particularly after the advent of deep learning. However, the black-box nature of deep learning solutions together with the inherent class imbalance of medical imaging problems often leads to weak generalization capabilities, with models learning features based on spurious correlations such as the aspect and position of laterality, patient position, equipment and hospital markers. In this study, an automatic method based on a YOLOv3 framework was thus developed for the detection of markers and written labels in chest radiography images. It is shown that this model successfully detects a large proportion of markers in chest radiography, even in datasets different from the training source, with a low rate of false positives per image. As such, this method could be used for performing automatic obscuration of markers in large datasets, so that more generic and meaningful features can be learned, thus improving classification performance and robustness.
2024
Authors
Ferreira, CA; Sousa, C; Marques, ID; Sousa, P; Ramos, I; Coimbra, M; Campilho, A;
Publication
SCIENTIFIC DATA
Abstract
Given the high prevalence of lung cancer, an accurate diagnosis is crucial. In the diagnosis process, radiologists play an important role by examining numerous radiology exams to identify different types of nodules. To aid the clinicians' analytical efforts, computer-aided diagnosis can streamline the process of identifying pulmonary nodules. For this purpose, medical reports can serve as valuable sources for automatically retrieving image annotations. Our study focused on converting medical reports into nodule annotations, matching textual information with manually annotated data from the Lung Nodule Database (LNDb)-a comprehensive repository of lung scans and nodule annotations. As a result of this study, we have released a tabular data file containing information from 292 medical reports in the LNDb, along with files detailing nodule characteristics and corresponding matches to the manually annotated data. The objective is to enable further research studies in lung cancer by bridging the gap between existing reports and additional manual annotations that may be collected, thereby fostering discussions about the advantages and disadvantages between these two data types.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.