Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by João Paulo Viana

2019

Explanatory and Causal Analysis of the MIBEL Electricity Market Spot Price

Authors
Goncalves, C; Ribeiro, M; Viana, J; Fernandes, R; Villar, J; Bessa, R; Correia, G; Sousa, J; Mendes, V; Nunes, AC;

Publication
2019 IEEE MILAN POWERTECH

Abstract
This paper analyzes the electricity prices of the MIBEL electricity spot market with respect to a set of possible explanatory variables. Understanding the main drivers of the electricity price is a key aspect in understanding price formation and in developing forecasting models, which are essential for the selling and buying strategies of market agents. For this analysis, different techniques have been applied in this work, including standard and lasso regression models, causal analysis based on bayesian networks and classification trees. Results from the different approaches are coherent and show strong dependency of the electricity prices with the Portuguese imported coal for lower non-dispatchable net demands, which has been progressively replaced by gas for larger non-dispatchable net demands. Hydro reservoirs and hydro production are also main explanatory variables of the electricity price for all non-dispatchable net demand levels.

2019

Load Forecasting Benchmark for Smart Meter Data

Authors
Viana, J; Bessa, RJ; Sousa, J;

Publication
2019 IEEE MILAN POWERTECH

Abstract
Actual integration of high-tech devices brings opportunities for better monitoring, management and control of low voltage networks. In this new paradigm, efficient tools should cope with the great amount of dispersed and considerably distinct data to support smarter decisions in almost real time. Besides the use of tools to enable an optimal network reconfiguration and integration of dispersed and renewable generation, the impact evaluation of integrating storage systems, accurate load forecasting methods must be found even when applied to individual consumers (characterized by the high presence of noise in time series). As this effort becomes providential in the smart grids context, this article compares three different approaches: one based on Kernel Density Estimation, an alternative based on Artificial Neural Networks and a method using Support Vector Machines. The first two methods revealed unequivocal benefits when compared to a Naive method consisting of a simple reproduction of the last available day.

2021

FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings' Consumer Engagement

Authors
Soares, F; Madureira, A; Pages, A; Barbosa, A; Coelho, A; Cassola, F; Ribeiro, F; Viana, J; Andrade, J; Dorokhova, M; Morais, N; Wyrsch, N; Sorensen, T;

Publication
ENERGIES

Abstract
Energy efficiency in buildings can be enhanced by several actions: encouraging users to comprehend and then adopt more energy-efficient behaviors; aiding building managers in maximizing energy savings; and using automation to optimize energy consumption, generation, and storage of controllable and flexible devices without compromising comfort levels and indoor air-quality parameters. This paper proposes an integrated Information and communications technology (ICT) based platform addressing all these factors. The gamification platform is embedded in the ICT platform along with an interactive energy management system, which aids interested stakeholders in optimizing "when and at which rate" energy should be buffered and consumed, with several advantages, such as reducing peak load, maximizing local renewable energy consumption, and delivering more efficient use of the resources available in individual buildings or blocks of buildings. This system also interacts with an automation manager and a users' behavior predictor application. The work was developed in the Horizon 2020 FEEdBACk (Fostering Energy Efficiency and BehAvioral Change through ICT) project.

2021

Real-World Implementation of an ICT-Based Platform to Promote Energy Efficiency

Authors
Dorokhova, M; Ribeiro, F; Barbosa, A; Viana, J; Soares, F; Wyrsch, N;

Publication
ENERGIES

Abstract
The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.

2021

Functional Scalability and Replicability Analysis for Smart Grid Functions: The InteGrid Project Approach

Authors
Menci, SP; Bessa, RJ; Herndler, B; Korner, C; Rao, BV; Leimgruber, F; Madureira, AA; Rua, D; Coelho, F; Silva, JV; Andrade, JR; Sampaio, G; Teixeira, H; Simoes, M; Viana, J; Oliveira, L; Castro, D; Krisper, U; Andre, R;

Publication
ENERGIES

Abstract
The evolution of the electrical power sector due to the advances in digitalization, decarbonization and decentralization has led to the increase in challenges within the current distribution network. Therefore, there is an increased need to analyze the impact of the smart grid and its implemented solutions in order to address these challenges at the earliest stage, i.e., during the pilot phase and before large-scale deployment and mass adoption. Therefore, this paper presents the scalability and replicability analysis conducted within the European project InteGrid. Within the project, innovative solutions are proposed and tested in real demonstration sites (Portugal, Slovenia, and Sweden) to enable the DSO as a market facilitator and to assess the impact of the scalability and replicability of these solutions when integrated into the network. The analysis presents a total of three clusters where the impact of several integrated smart tools is analyzed alongside future large scale scenarios. These large scale scenarios envision significant penetration of distributed energy resources, increased network dimensions, large pools of flexibility, and prosumers. The replicability is analyzed through different types of networks, locations (country-wise), or time (daily). In addition, a simple replication path based on a step by step approach is proposed as a guideline to replicate the smart functions associated with each of the clusters.

2021

Explanatory and Causal Analysis of the Portuguese Manual Balancing Reserve

Authors
Goncalves, C; Ribeiro, M; Viana, J; Fernandes, R; Villar, J; Bessa, R; Correia, G; Sousa, J; Mendes, V; Nunes, AC;

Publication
2021 IEEE MADRID POWERTECH

Abstract
This paper analyzes the activation of the manual balancing reserve of the Portuguese system and its prices for the period 2015-2017. Standard, logistic and LASSO regression models, causal analysis based on Bayesian networks and random forests are applied. Results show that the variables that better explain the activation of the manual reserve are the imbalances of both renewable generation and demand, but surprisingly forecasted with persistence models based on the last verified measurements (available 15 minutes before the reserve activation), instead of using more elaborated models based on production forecasts. Prices, however, are harder to explain suggesting the need for additional information, such as bidding prices not used in this study.

  • 1
  • 2