2024
Authors
Santos, R; Rocha, C; Dias, R; Quintas, J;
Publication
SIMULATION FOR A SUSTAINABLE FUTURE, PT 1, EUROSIM 2023
Abstract
A new generation of manufacturing systems is emerging through the adoption of new policies to overcome future crises highlighted by constant social, environmental, and economic concerns. The rise of so-called smart manufacturing is noticeable. However, new risks to humankind are being introduced, and, more than ever, science and technology are required to guarantee the future sustainability and resilience of our manufacturing systems. This research presents a Digital Twin approach resorting to simulation models with embedded intelligence to transform efficient manufacturing systems and react to complex and unpredictable circumstances. The methodology covers production scheduling incorporating flexible robots, internal logistics supervision contemplating planning and control of mobile robots, and capacity management. The method demonstrates the potential of integrating Additive Manufacturing technologies to quickly react to production needs. The developed strategy was enforced and assessed in an industrial experiment, exhibiting its robustness and promising application. The attained results were very encouraging, highlighting its potential extension to more complex industrial systems.
2024
Authors
Silva, C; Santos, F; Senna, P; Borges, M; Marques, M;
Publication
Springer Proceedings in Business and Economics
Abstract
Warehouses and distribution centres play a key role in any Supply Chain, particularly in the retail sector, where a network of stores needs to be replenished in a highly dynamic and increasingly uncertain context. In this regard, companies need to improve their intralogistics systems daily to ensure long-term competitiveness and sustainable growth. This is especially true in picking-by-line systems where many time-consuming and manual tasks are usually involved. This study introduces a new decision support tool based on simulation methods to aid the decision-making process in a picking-by-Line system, aimed to improve the overall picking operations efficiency, through human-centric perspective. A Discrete-Event-Simulation model is proposed to assess a set of parameters under several scenarios, driving a more informed decision-making process towards cost-effective strategies. The proposed approach was validated through an empirical case study showing its effectiveness in assisting operational planning decisions related to capacity and resource allocation. The system demonstrates promising versatility for application across varied warehouse environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.