Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by João Pedro Souza

2020

BAT Algorithm aplicado à localização de robôs móveis

Authors
Braga, AdF; De Souza, JPC; Coelho, FdO; Marcato, ALM;

Publication
Principia: Caminhos da Iniciação Científica

Abstract
A robótica assistiva está presente em diversas áreas de pesquisa do mundo atual. Trabalhos voltados para o aumento da produtividade e para o auxílio de pessoas com deficiência física são alguns exemplos de como a robótica pode facilitar e melhorar a qualidade de vida do ser humano. Com o desenvolvimento de aplicações remotas é possível controlar diferentes dispositivos sem a necessidade de estar presente no local de atuação. Este artigo tem como objetivo controlar um robô humanoide remotamente através do reconhecimento de sinais de eletromiografia, bem como localizá-lo em seu ambiente.

2021

Reconfigurable Grasp Planning Pipeline with Grasp Synthesis and Selection Applied to Picking Operations in Aerospace Factories

Authors
de Souza, JPC; Costa, CM; Rocha, LF; Arrais, R; Moreira, AP; Pires, EJS; Boaventura Cunha, J;

Publication
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING

Abstract
Several approaches with interesting results have been proposed over the years for robot grasp planning. However, the industry suffers from the lack of an intuitive and reliable system able to automatically estimate grasp poses while also allowing the integration of grasp information from the accumulated knowledge of the end user. In the presented paper it is proposed a non-object-agnostic grasping pipeline motivated by picking use cases from the aerospace industry. The planning system extends the functionality of the simulated annealing optimization algorithm for allowing its application within an industrial use case. Therefore, this paper addresses the first step of the design of a reconfigurable and modular grasping pipeline. The key idea is the creation of an intuitive and functional grasping framework for being used by factory floor operators according to the task demands. This software pipeline is capable of generating grasp solutions in an offline phase, and later on, in the robot operation phase, can choose the best grasp pose by taking into consideration a set of heuristics that try to achieve a successful grasp while also requiring the least effort for the robotic arm. The results are presented in a simulated and a real factory environment, relying on a mobile platform developed for intralogistic tasks. With this architecture, new state-of-art methodologies can be integrated in the future for growing the grasping pipeline and make it more robust and applicable to a wider range of use cases.

2019

Autonomous Landing of UAV Based on Artificial Neural Network Supervised by Fuzzy Logic

Authors
Carvalho de Souza, JPC; Marques Marcato, ALM; de Aguiar, EP; Juca, MA; Teixeira, AM;

Publication
JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS

Abstract
Autonomous Unmanned Aerial Vehicles (UAVs) become an important field of research in which multiple applications can be designed, such as surveillance, deliveries, and others. Thus, studies aiming to improve the performance of these vehicles are being proposed: from new sensing solutions to more robust control techniques. Additionally, the autonomous UAV has challenges in flight stages as the landing. This procedure needs to be performed safely with a reduced error margin in static and dynamic targets. To solve this imperative issue, many applications with computer vision and control theory have been developed. Therefore, this paper presents an alternative method to train a multilayer perceptron neural network based on fuzzy Mamdani logic to control the landing of a UAV on an artificial marker. The advantage of this method is the reduction in computational complexity while maintaining the characteristics and intelligence of the fuzzy logic controller. Results are presented with simulation and real tests for static and dynamic landing spots. For the real experiments, a quadcopter with an onboard computer and ROS is used.

2020

AdaptPack studio translator: translating offline programming to real palletizing robots

Authors
de Souza, JPC; Castro, AL; Rocha, LF; Silva, MF;

Publication
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION

Abstract
Purpose This paper aims to propose a translation library capable of generating robots proprietary code after their offline programming has been performed in a software application, named AdaptPack Studio, running over a robot simulation and offline programming software package. Design/methodology/approach The translation library, named AdaptPack Studio Translator, is capable to generate proprietary code for the Asea Brown Boveri, FANUC, Keller und Knappich Augsburg and Yaskawa Motoman robot brands, after their offline programming has been performed in the AdaptPack Studio application. Findings Simulation and real tests were performed showing an improvement in the creation, operation, modularity and flexibility of new robotic palletizing systems. In particular, it was verified that the time needed to perform these tasks significantly decreased. Practical implications The design and setup of robotics palletizing systems are facilitated by an intuitive offline programming system and by a simple export command to the real robot, independent of its brand. In this way, industrial solutions can be developed faster, in this way, making companies more competitive. Originality/value The effort to build a robotic palletizing system is reduced by an intuitive offline programming system (AdaptPack Studio) and the capability to export command to the real robot using the AdaptPack Studio Translator. As a result, companies have an increase in competitiveness with a fast design framework. Furthermore, and to the best of the author's knowledge, there is also no scientific publication formalizing and describing how to build the translators for industrial robot simulation and offline programming software packages, being this a pioneer publication in this area.

2020

AdaptPack Studio: an automated intelligent framework for offline factory programming

Authors
Castro, AL; de Souza, JPC; Rocha, LF; Silva, MF;

Publication
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION

Abstract
Purpose This paper aims to propose an automated framework for agile development and simulation of robotic palletizing cells. An automatic offline programming tool, for a variety of robot brands, is also introduced. Design/methodology/approach This framework, named AdaptPack Studio, offers a custom-built library to assemble virtual models of palletizing cells, quick connect these models by drag and drop, and perform offline programming of robots and factory equipment in short steps. Findings Simulation and real tests performed showed an improvement in the design, development and operation of robotic palletizing systems. The AdaptPack Studio software was tested and evaluated in a pure simulation case and in a real-world scenario. Results have shown to be concise and accurate, with minor model displacement inaccuracies because of differences between the virtual and real models. Research limitations/implications An intuitive drag and drop layout modeling accelerates the design and setup of robotic palletizing cells and automatic offline generation of robot programs. Furthermore, A* based algorithms generate collision-free trajectories, discretized both in the robot joints space and in the Cartesian space. As a consequence, industrial solutions are available for production in record time, increasing the competitiveness of companies using this tool. Originality/value The AdaptPack Studio framework includes, on a single package, the possibility to program, simulate and generate the robot code for four different brands of robots. Furthermore, the application is tailored for palletizing applications and specifically includes the components (Building Blocks) of a particular company, which allows a very fast development of new solutions. Furthermore, with the inclusion of the Trajectory Planner, it is possible to automatically develop robot trajectories without collisions.

2021

Robotic grasping: from wrench space heuristics to deep learning policies

Authors
de Souza, JPC; Rocha, LF; Oliveira, PM; Moreira, AP; Boaventura Cunha, J;

Publication
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING

Abstract
The robotic grasping task persists as a modern industry problem that seeks autonomous, fast implementation, and efficient techniques. Domestic robots are also a reality demanding a delicate and accurate human-machine interaction, with precise robotic grasping and handling. From decades ago, with analytical heuristics, to recent days, with the new deep learning policies, grasping in complex scenarios is still the aim of several works' that propose distinctive approaches. In this context, this paper aims to cover recent methodologies' development and discuss them, showing state-of-the-art challenges and the gap to industrial applications deployment. Given the complexity of the related issue associated with the elaborated proposed methods, this paper formulates some fair and transparent definitions for results' assessment to provide researchers with a clear and standardised idea of the comparison between the new proposals.

  • 2
  • 3