2022
Authors
Silva, D; Monteiro, CS; Silva, SO; Frazao, O; Pinto, JV; Raposo, M; Ribeiro, PA; Serio, S;
Publication
PHOTONICS
Abstract
Thin films of titanium dioxide (TiO2) and titanium (Ti) were deposited onto glass and optical fiber supports through DC magnetron sputtering, and their transmission was characterized with regard to their use in optical fiber-based sensors. Deposition parameters such as oxygen partial pressure, working pressure, and sputtering power were optimized to attain films with a high reflectance. The films deposited on glass supports were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Regarding the deposition parameters, all three parameters were tested simultaneously, changing the working pressure, the sputtering power, and the oxygen percentage. It was possible to conclude that a lower working pressure and higher applied power lead to films with a higher reflectance. Through the analysis of the as-sputtered thin films using X-ray diffraction, the deposition of both Ti and TiO2 films was confirmed. To study the applicability of TiO2 and Ti in fiber sensing, several thin films were deposited in single mode fibers (SMFs) using the sputtering conditions that revealed the most promising results in the glass supports. The sputtered TiO2 and Ti thin films were used as mirrors to increase the visibility of a low-finesse Fabry-Perot cavity and the possible sensing applications were studied.
2020
Authors
Monteiro, CS; Silva, SO; Santos, JL; Frazao, O;
Publication
Optics InfoBase Conference Papers
Abstract
A fiber sensor composed by a graphene oxide membrane at the tip of a capillary is presented. The graphene oxide membrane acts as a low-reflectivity mirror, distanced from a single mode fiber forming a low finesse Fabry-Perot interferometer. The response of the sensor to acoustic pressure with varying frequency is studied in the range between 5 and 45 kHz, attaining a minimum signal to noise ratio of 14 dB. © 2021 The Author(s).
2022
Authors
Rodrigues, AV; Reis, J; Martins, AJM; Monteiro, CS; Silva, SO; Caridade, CMR; Tavares, SO; Frazao, O;
Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
Abstract
This study presents the dependence of strain sensitivity on cavity length in conventional Fabry-Perot (F-P) sensors. A high number of F-P sensors were required and to ensure their reproducibility, a manufacturing process was developed to obtain similar sensors but with different types of lengths. A hollow-core silica tube was used to fabricate several F-P cavities by fusion splicing it between two sections of SMF28 fiber. The fabricated F-P has a varying length ranging from 15 to 2500 mu m. The cavities were measured under a microscope and the reflected spectrum was acquired for each one. Strain measurements were performed for a maximum strain of 1000 mu epsilon. The strain sensitivity showed a highly linear correlation with increment lambda(FSR). Small length variations for short cavities heavily affect the FSR value. The smallest and longest cavities present sensitivities of 8.71 and 2.68 pm/mu epsilon, respectively. Thermal characterization for low- and high-temperature regimes was also performed and is constant for tested sensors.
2023
Authors
Cunha, C; Assuncao, AS; Monteiro, CS; Leitao, C; Mendes, JP; Silva, S; Frazao, O; Novais, S;
Publication
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG
Abstract
Using surface resonance (SPR) as a sensitivity enhancer, this work describes the development of a transmissive multimode optical fiber sensor with a gold (Au) thin film that measures glucose concentration. The fiber's cladding was initially removed, and an Au layer was then sputtered onto its surface to simultaneously excite SPR and reflect light, making the SPR sensor extremely sensitive to changes in the environment's refractive index. A range of glucose concentrations, from 0.0001 to 0.5000 g/ml, were tested on the sensor. A maximum sensitivity of 161.302 nm/(g/mL) was attained for the lowest glucose concentration, while the highest concentration yielded a sensitivity of 312.000 nm/(g/mL). The proposed sensor's compact size, high sensitivity, good stability and practicality make it a promising candidate for a range of applications, including detecting diabetes.
2023
Authors
Monteiro, CS; Perez Herrera, RA; Silva, SO; Frazão, O;
Publication
Proceedings of the 11th International Conference on Photonics, Optics and Laser Technology, PHOTOPTICS 2023, Lisbon, Portugal, February 16-18, 2023.
Abstract
The use of graphene oxide (GO) as a saturable absorber for short pulses generation in an Erbium-doped fiber laser was studied and demonstrated. The saturable absorber consisted of a thin GO film, with a high concentration of monolayer GO flakes, spray-coated on the end face of a ferrule-connected fiber. By including the saturable absorber in the laser cavity and controlling the intra-cavity polarization, the generation of shortpulsed light was achieved under mode-locking and Q-switching operations. Under mode-locking operation, it was observed a pulse train with a fundamental repetition rate of 1.48 MHz, with a working wavelength centered at 1564.4 nm. In the Q-switch operation, a pulse train with a 12.7 kHz repetition rate and a 14.3 µs pulse duration was attained for a 230-mA pump current. Further investigation showed a linear dependence of the repetition rate with the pump power, attaining frequencies between 12.7 and 14.4 kHz. © 2023 by SCITEPRESS - Science and Technology Publications, Lda.
2023
Authors
Frazão, O; Robalinho, P; Vaz, A; Soares, L; Soares, B; Monteiro, C; Novais, S; Silva, S;
Publication
EPJ Web of Conferences
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.