2023
Authors
Brito, C; Ferreira, P; Portela, B; Oliveira, R; Paulo, J;
Publication
38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023
Abstract
We propose Soteria, a system for distributed privacy-preserving Machine Learning (ML) that leverages Trusted Execution Environments (e.g. Intel SGX) to run code in isolated containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The conducted experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41%, when compared to previous related work. Our protocol is accompanied by a security proof, as well as a discussion regarding resilience against a wide spectrum of ML attacks.
2017
Authors
Peixoto, C; Brito, C; Fontainhas, M; Peixoto, H; Machado, J; Abelha, A;
Publication
2017 5TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW) 2017
Abstract
Continuous Ambulatory Peritoneal Dialysis (CAPD) is one of the many treatments for patients with advanced kidney disease. It is a treatment that needs regular monitoring and understanding of all the factors of blood and urine samples of each patient to understand if the treatment is going well. This article will explore data information from patients undergoing CAPD procedure. This data information helps to comprehend how interoperability acts in a Health Information System since this data contains patients' personal information but also patients' blood and urine samples' results, meaning all the services must be connected. In this work, it is used Business Intelligence process to prove that all the information available can be useful to understand the treatment above-mentioned and also how can several factors influence or not the number of patients going through kidney failure and CAPD by the study of indicators.
2023
Authors
Brito, CV; Ferreira, PG; Portela, BL; Oliveira, RC; Paulo, JT;
Publication
IEEE ACCESS
Abstract
The adoption of third-party machine learning (ML) cloud services is highly dependent on the security guarantees and the performance penalty they incur on workloads for model training and inference. This paper explores security/performance trade-offs for the distributed Apache Spark framework and its ML library. Concretely, we build upon a key insight: in specific deployment settings, one can reveal carefully chosen non-sensitive operations (e.g. statistical calculations). This allows us to considerably improve the performance of privacy-preserving solutions without exposing the protocol to pervasive ML attacks. In more detail, we propose Soteria, a system for distributed privacy-preserving ML that leverages Trusted Execution Environments (e.g. Intel SGX) to run computations over sensitive information in isolated containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41% when compared to previous related work. Our protocol is accompanied by a security proof and a discussion regarding resilience against a wide spectrum of ML attacks.
2023
Authors
Pina, N; Brito, C; Vitorino, R; Cunha, I;
Publication
Transportation Research Procedia
Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality; thus, smart cities face challenges regarding active and shared mobility due to public transportation's low attractiveness and lack of real-time multimodal information. These issues have led to a lack of data on the community's mobility choices, traffic commuters' carbon footprint and corresponding low motivation to change habits. Besides, many consumers are reluctant to use some software tools due to the lack of data privacy guarantee. This paper presents a methodology developed in the FranchetAI project that addrebes these issues by providing distributed privacy-preserving machine learning models that identify travel behaviour patterns and respective GHG emissions to recommend alternative options. Also, the paper presents the developed FranchetAI mobile prototype. © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
2024
Authors
Brito, C; Ferreira, P; Paulo, J;
Publication
Abstract
2024
Authors
Cepa, B; Brito, C; Sousa, A;
Publication
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.