Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Cláudia Vanessa Brito

2018

Assessment of an IoT platform for data collection and analysis for medical sensors

Authors
Rei, J; Brito, C; Sousa, A;

Publication
Proceedings - 4th IEEE International Conference on Collaboration and Internet Computing, CIC 2018

Abstract
Health facilities produce an increasing and vast amount of data that must be efficiently analyzed. New approaches for healthcare monitoring are being developed every day and the Internet of Things (IoT) came to fill the still existing void on real-time monitoring. A new generation of mechanisms and techniques are being used to facilitate the practice of medicine, promoting faster diagnosis and prevention of diseases. We proposed a system that relies on IoT for storing and monitoring medical sensors data with analytic capabilities. To this end, we chose two approaches for storing this data which were thoroughly evaluated. Apache HBase presents a higher rate of data ingestion, when collaborating with the Kaa IoT platform, than Apache Cassandra, exhibiting good performance storing unstructured data, as presented in a healthcare environment. The outcome of this system has shown the possibility of a large number of medical sensors being simultaneously connected to the same platform (6000 records sent by the second or 48 ECG sensors with a frequency of 125Hz). The results presented in this paper are promising and should be further investigated as a comprehensive system would benefit the patient's diagnosis but also the physicians. © 2018 IEEE.

2019

Electrocardiogram Beat-Classification Based on a ResNet Network

Authors
Brito, C; Machado, A; Sousa, A;

Publication
MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL

Abstract
When dealing with electrocardiography (ECG) the main focus relies on the classification of the heart's electric activity and deep learning has been proving its value over the years classifying the heartbeats, exhibiting great performance when doing so. Following these assumptions, we propose a deep learning model based on a ResNet architecture with convolutional ID layers to classes the beats into one of the 4 classes: normal, atrial premature contraction, premature ventricular contraction and others. Experimental results with MIT-BIH Arrhythmia Database confirmed that the model is able to perform well, obtaining an accuracy of 96% when using stochastic gradient descent (SGD) and 83% when using adaptive moment estimation (Adam), SGD also obtained F1-scores over 90% for the four classes proposed. A larger dataset was created and tested as unforeseen data for the trained model, proving that new tests should be done to improve the accuracy of it.

2021

The Case for Storage Optimization Decoupling in Deep Learning Frameworks

Authors
Macedo, R; Correia, C; Dantas, M; Brito, C; Xu, WJ; Tanimura, Y; Haga, J; Paulo, J;

Publication
2021 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2021)

Abstract
Deep Learning (DL) training requires efficient access to large collections of data, leading DL frameworks to implement individual I/O optimizations to take full advantage of storage performance. However, these optimizations are intrinsic to each framework, limiting their applicability and portability across DL solutions, while making them inefficient for scenarios where multiple applications compete for shared storage resources. We argue that storage optimizations should be decoupled from DL frameworks and moved to a dedicated storage layer. To achieve this, we propose a new Software-Defined Storage architecture for accelerating DL training performance. The data plane implements self-contained, generally applicable I/O optimizations, while the control plane dynamically adapts them to cope with workload variations and multi-tenant environments. We validate the applicability and portability of our approach by developing and integrating an early prototype with the TensorFlow and PyTorch frameworks. Results show that our I/O optimizations significantly reduce DL training time by up to 54% and 63% for TensorFlow and PyTorch baseline configurations, while providing similar performance benefits to framework-intrinsic I/O mechanisms provided by TensorFlow.

2022

A data mining approach to classify serum creatinine values in patients undergoing continuous ambulatory peritoneal dialysis

Authors
Brito, C; Esteves, M; Peixoto, H; Abelha, A; Machado, J;

Publication
WIRELESS NETWORKS

Abstract
Continuous ambulatory peritoneal dialysis (CAPD) is a treatment used by patients in the end-stage of chronic kidney diseases. Those patients need to be monitored using blood tests and those tests can present some patterns or correlations. It could be meaningful to apply data mining (DM) to the data collected from those tests. To discover patterns from meaningless data, it becomes crucial to use DM techniques. DM is an emerging field that is currently being used in machine learning to train machines to later aid health professionals in their decision-making process. The classification process can found patterns useful to understand the patients' health development and to medically act according to such results. Thus, this study focuses on testing a set of DM algorithms that may help in classifying the values of serum creatinine in patients undergoing CAPD procedures. Therefore, it is intended to classify the values of serum creatinine according to assigned quartiles. The better results obtained were highly satisfactory, reaching accuracy rate values of approximately 95%, and low relative absolute error values.

2022

Cloud-Based Privacy-Preserving Medical Imaging System Using Machine Learning Tools

Authors
Alves, J; Soares, B; Brito, C; Sousa, A;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2022

Abstract
Healthcare environments are generating a deluge of sensitive data. Nonetheless, dealing with large amounts of data is an expensive task, and current solutions resort to the cloud environment. Additionally, the intersection of the cloud environment and healthcare data opens new challenges regarding data privacy. With this in mind, we propose MEDCLOUDCARE (MCC), a healthcare application offering medical image viewing and processing tools while integrating cloud computing and AI. Moreover, MCC provides security and privacy features, scalability and high availability. The system is intended for two user groups: health professionals and researchers. The former can remotely view, process and share medical imaging information in the DICOM format. Also, it can use pre-trained Machine Learning (ML) models to aid the analysis of medical images. The latter can remotely add, share, and deploy ML models to perform inference on DICOM images. MCC incorporates a DICOM web viewer enabling users to view and process DICOM studies, which they can also upload and store. Regarding the security and privacy of the data, all sensitive information is encrypted at rest and in transit. Furthermore, MCC is intended for cloud environments. Thus, the system is deployed using Kubernetes, increasing the efficiency, availability and scalability of the ML inference process.

2023

Generative Adversarial Networks in Healthcare: A Case Study on MRI Image Generation

Authors
Cepa, B; Brito, C; Sousa, A;

Publication
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG

Abstract
Medical imaging, mainly Magnetic Resonance Imaging (MRI), plays a predominant role in healthcare diagnosis. Nevertheless, the diagnostic process is prone to errors and is conditioned by available medical data, which might be insufficient. A novel solution is resorting to image generation algorithms to address these challenges. Thus, this paper presents a Deep Learning model based on a Deep Convolutional Generative Adversarial Network (DCGAN) architecture. Our model generates 2D MRI images of size 256x256, containing an axial view of the brain with a tumor. The model was implemented using ChainerMN, a scalable and flexible framework that enables faster and parallel training of Deep Learning networks. The images obtained provide an overall representation of the brain structure and the tumoral area and show considerable brain-tumor separation. For this purpose, and owing to their previous state-of-the-art results in general image-generation tasks, we conclude that GAN-based models are a promising approach for medical imaging.

  • 1
  • 3