Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Daniel Filipe Campos

2023

ATLANTIS Coastal Testbed: A near-real playground for the testing and validation of robotics for O&M

Authors
Pinto, AM; Marques, JVA; Abreu, N; Campos, DF; Pereira, MI; Gonçalves, E; Campos, HJ; Pereira, P; Neves, F; Matos, A; Govindaraj, S; Durand, L;

Publication
OCEANS 2023 - LIMERICK

Abstract
The demonstration of robotic technologies in real environments is essential for technology developers and end-users to fully showcase the benefits of theirs solutions, and contributes to the promotion of the transition of inspection and maintenance methodologies towards automated robotic strategies. However, before allowing technologies to be demonstrated in real, operating offshore wind-farms, there is a need to de-risk the technology, to ensure its safe operation offshore. As part of the ATLANTIS project, a pioneer pilot infrastructure, the ATLANTIS Test Centre, was installed in Viana do Castelo, Portugal. This infrastructure will allow the demonstration of key enabling robotic technologies for offshore inspection and maintenance. The Test Centre is composed of two distinct testbeds, and a supervisory control centre, enabling the de-risking, testing, validation and demonstration of technologies, in both near-real and real environments. This paper presents the details of the Coastal Testbed of the ATLANTIS Test Centre, from implementation to available resources and infrastructures and environment details.

2023

Shore Control Centre for Multi-Domain Heterogeneous Robotic Vehicles

Authors
Neves, FS; Campos, HJ; Campos, DF; Claro, RM; Almeida, PN; Marques, JV; Pinto, AM;

Publication
OCEANS 2023 - LIMERICK

Abstract
Given the increased interest in offshore wind energy, there is a greater need for advancements in operation and maintenance technology. As a result, robotic solutions are required to avoid human risky behavior and reduce associated operational costs. In order to accommodate the need for inspecting multiple domains, multiple robotic vehicles are utilized, which requires the deployment of control stations that can effectively monitor, facilitate communication among different vehicles, and ensure successful completion of the overall mission. A shore control centre (SCC) is a communication software infrastructure capable of monitoring, localizing and planning missions for a group of multi-domain heterogeneous robots within a local network. This paper proposes an SCC as: (i) an active monitor by continuously observing the local behaviour of each robot and the global progress of the mission and its safety; (ii) a mission planner that provides and supervises its execution while constantly checking for critical failures and intervening in the case of unexpected events. Also, The control centre is able to connect to multiple vehicles from various domains and monitor real-time data. Accordingly, validation procedures were carried out in real conditions.

2019

An Adaptive Velocity Obstacle Avoidance Algorithm for Autonomous Surface Vehicles

Authors
Campos, DF; Matos, A; Pinto, AM;

Publication
2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)

Abstract
This paper presents a new algorithm for a real-time obstacle avoidance for autonomous surface vehicles (ASV) that is capable of undertaking preemptive actions in complex and challenging scenarios. The algorithm is called adaptive velocity obstacle avoidance (AVOA) and takes into consideration the kinematic and dynamic constraints of autonomous vessels along with a protective zone concept to determine the safe crossing distance to obstacles. A configuration space that includes both the position and velocity of static or dynamic elements within the field-of-view of the ASV is supporting a particle swarm optimization procedure that minimizes the risk of harm and the deviation towards a predefined course while generating a navigation path with capabilities to prevent potential collisions. Extensive experiments demonstrate the ability of AVOA to select a velocity estimative for ASVs that originates a smoother, safer and, at least, two times more effective collision-free path when compared to existing techniques.

2024

Nautilus: An autonomous surface vehicle with a multilayer software architecture for offshore inspection

Authors
Campos, DF; Goncalves, EP; Campos, HJ; Pereira, MI; Pinto, AM;

Publication
JOURNAL OF FIELD ROBOTICS

Abstract
The increasing adoption of robotic solutions for inspection tasks in challenging environments is becoming increasingly prevalent, particularly in the offshore wind energy industry. This trend is driven by the critical need to safeguard the integrity and operational efficiency of offshore infrastructure. Consequently, the design of inspection vehicles must comply with rigorous requirements established by the offshore Operation and Maintenance (O&M) industry. This work presents the design of an autonomous surface vehicle (ASV), named Nautilus, specifically tailored to withstand the demanding conditions of offshore O&M scenarios. The design encompasses both hardware and software architectures, ensuring Nautilus's robustness and adaptability to the harsh maritime environment. It presents a compact hull capable of operating in moderate sea states (wave height up to 2.5 m), with a modular hardware and software architecture that is easily adapted to the mission requirements. It has a perception payload and communication system for edge and real-time computing, communicates with a Shore Control Center and allows beyond visual line-of-sight operations. The Nautilus software architecture aims to provide the necessary flexibility for different mission requirements to offer a unified software architecture for O&M operations. Nautilus's capabilities were validated through the professional testing process of the ATLANTIS Test Center, involving operations in both near-real and real-world environments. This validation process culminated in Nautilus's reaching a Technology Readiness Level 8 and became the first ASV to execute autonomous tasks at a floating offshore wind farm located in the Atlantic.

  • 4
  • 4