2024
Authors
Abay, SG; Lima, F; Geurts, L; Camara, J; Pedrosa, J; Cunha, A;
Publication
Procedia Computer Science
Abstract
Low-cost smartphone-compatible portable ophthalmoscopes can capture visuals of the patient's retina to screen several ophthalmological diseases like glaucoma. The images captured have lower quality and resolution than standard retinography devices but enough for glaucoma screening. Small videos are captured to improve the chance of inspecting the eye properly; however, those videos may not always have enough quality for screening glaucoma, and the patient needs to repeat the inspection later. In this paper, a method for automatic assessment of the quality of videos captured using the D-Eye lens is proposed and evaluated with a personal dataset with 539 videos. Based on two methods developed for retina localization on the images/frames, the Circle Hough Transform method with a precision of 78,12% and the YOLOv7 method with a precision of 99,78%, the quality assessment method automatically decides on the quality of the video by measuring the number of frames of good-quality in each video, according to the chosen threshold. © 2024 Elsevier B.V.. All rights reserved.
2024
Authors
Santos, R; Baeza, R; Filipe, VM; Renna, F; Paredes, H; Pedrosa, J;
Publication
2024 IEEE 22nd Mediterranean Electrotechnical Conference, MELECON 2024
Abstract
Coronary artery calcium is a good indicator of coronary artery disease and can be used for cardiovascular risk stratification. Over the years, different deep learning approaches have been proposed to automatically segment coronary calcifications in computed tomography scans and measure their extent through calcium scores. However, most methodologies have focused on using 2D architectures which neglect most of the information present in those scans. In this work, we use a 3D convolutional neural network capable of leveraging the 3D nature of computed tomography scans and including more context in the segmentation process. In addition, the selected network is lightweight, which means that we can have 3D convolutions while having low memory requirements.Our results show that the predictions of the model, trained on the COCA dataset, are close to the ground truth for the majority of the patients in the test set obtaining a Dice score of 0.90±0.16 and a Cohen's linearly weighted kappa of 0.88 in Agatston score risk categorization. In conclusion, our approach shows promise in the tasks of segmenting coronary artery calcifications and predicting calcium scores with the objectives of optimizing clinical workflow and performing cardiovascular risk stratification. © 2024 IEEE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.